Синхронные и асинхронные двигатели, их отличия и разница в применении. Отличие синхронного от асинхронного двигателя

Асинхронный и синхронный электродвигатели. Принцип работы

Трехфазные асинхронные двигатели составляют основу современного электропривода. От ДПТ их отличает простота конструкции, надежность, высокие технико-экономические показатели. В настоящее время частотные преобразователи позволили сделать регулировочные свойства АД более лучшими, чем у ДПТ с НВ.

По конструкции ротора АД разделяются на двигатели и короткозамкнутым ротором (КЗР) и двигатели с фазным ротором (ФР). Наиболее простая конструкция у АД с КЗР. Ротор такого двигателя не имеет выводов, так как его обмотка выполнена в виде короткозамкнутой клетки (беличья клетка). Его обмотка выполнена в виде ряда медных или алюминиевых стержней, расположенных по периметру сердечника ротора, замкнутые в двух сторон короткозамыкающими кольцами. Простота конструкции обеспечивает им высокую надежность, простоту обслуживания и невысокую стоимость. Схема включения АД СС КЗР представлена на рис. 4.1, а.

Фазный ротор имеет трехфазную обмотку, выполненную по типу обмотки статора (рис. 4.1, б). Одни концы катушек соединены в нулевую точку («звезда»), а другие – подключены к контактным кольцам. На кольца наложены щетки, осуществляющие скользящий контакт с обмоткой ротора. При такой конструкции возможно подсоединение к обмотке ротора пускового или регулировочного реостата, позволяющего менять электрическое сопротивление в цепи ротора. Такие двигатели более сложны в изготовлении и эксплуатации, поэтому применяются только там, где применение АД с КЗР не обеспечит требованиям в приводу механизма.

Ротор АД отстаёт от вращающегося магнитного поля статора, которое создается обмоткой статора, то есть вращение происходит асинхронно. В этих условиях вращающееся поле статора индуцирует ЭДС в обмотке роторе, под действием которого в роторе протекает ток, который взаимодействует с вращающимся магнитным полем (ВМП), создавая вращающий момент двигателя. В рабочих режимах разница частот вращения статора и ротора не велика и составляет несколько процентов. При рассмотрение рабочих процессов АД обычно используют понятие скольжения

Скорость асинхронного двигателя в рабочих режимах

где синхронная частота вращения магнитного поля ; – частота питающего напряжения ; – число пар полюсов.

Статор синхронного двигателя (СД) конструктивно не отличается от статора АД. Ротор СД имеет явнополюсную конструкцию, на полюсах которого расположена обмотка возбуждения. При включении обмотки к источнику постоянного тока в двигателе создается дополнительное магнитное поле. Таким образом, для работы синхронного двигателя кроме 3х-фазного переменного напряжения требуется также постоянное. Исключение составляют двигатели, возбуждаемые постоянными магнитами. Такие двигатели обладают абсолютно жесткой механической характеристикой: ротор двигателя вращается синхронно с вращающимся магнитным полем с частотой .

В отличие от АД, синхронные не создают пускового момента, так как ротор двигателя по причине инерционности не может мгновенно разогнаться до синхронной скорости. Для пуска СД необходимо предварительно привести его во вращение до скорости, близкой к синхронной ( . С этой целью применяют асинхронный пуск, для чего на роторе двигателя располагается пусковая обмотка, конструктивно похожая на беличью клетку.

Процесс асинхронного пуска СД протекает следующим образом (рис. 4.2).

При включении обмотки статора СД в сеть СД запускается как асинхронный. При этом обмотку возбуждения замыкают на сопротивление для ограничения величины ЭДС, которая наводится в ОВ при пуске двигателя. При достижении скорости вращения близкой к номинальной, обмотку возбуждения подключают к постоянному напряжению, и двигатель втягивается в синхронизм, то есть скорость вращения двигателя становится равной синхронной скорости.

Синхронные двигатели изготавливаются на большие мощности: от сотен до тысяч киловатт. Объясняется это тем, что при меньших мощностях их применение нецелесообразно по технико-экономическим показателям.

СД обычно имеют целевое назначение, то есть каждая серия разработана для конкретных механизмов (для шаровых мельниц - СДМЗ, для привода компрессоров – СДК, для привода насосов – ВДС и др.).

Синхронные двигатели имеют перегрузочную способность .

Еще одной особенностью СД является возможность работать с величиной , более того, при перевозбуждении синхронный двигатель начинает генерировать емкостную нагрузку. Для повышении в сети используют синхронные компенсаторы, представляющие собой перевозбужденные СД специальной конструкции, работающие без нагрузки на валу.

Прежде чем разобраться, в чём их отличие, необходимо выяснить, что такое электродвигатель? Электродвигатель – это электрическая машина, которая приводится в действие от электроэнергии и служит приводом для других механизмов.

Объяснение принципа работы синхронного электродвигателя для «чайников»

С детства мы помним, что два магнита, если их приблизить друг к другу, в одном случае притягиваются, а в другом отталкиваются. Происходит это, в зависимости от того, что какими сторонами магнитов мы их соединяем, разноимённые полюса притягиваются, а одноимённые отталкиваются. Это – постоянные магниты, у которых магнитное поле присутствует постоянно. Существуют и переменные магниты.

В школьном учебнике по физике есть рисунок, где изображён электромагнит в виде подковы и рамка с полукольцами на концах, которая расположена между его полюсами.

При расположении рамки в горизонтальном положении в пространстве между полюсами магнитов, из-за того, что магнит притягивает разноимённые полюса и отталкивает одноимённые, на рамку подаётся ток, одинакового знака. Вокруг рамки появляется электромагнитное поле (вот пример переменного магнита!), полюса магнитов притягивают рамку, и она поворачивается в вертикальное положение. При достижении вертикали, на рамку подаётся ток противоположного знака, электромагнитное поле рамки меняет полюсность, и полюса постоянного магнита начинают отталкивать рамку, вращая её до горизонтального положения, после чего цикл вращения повторяется.

В этом заключается принцип работы электродвигателя. Причём, примитивного синхронного электродвигателя!

Итак, примитивный синхронный электродвигатель работает, когда на рамку подаётся ток. У настоящего синхронного электродвигателя, роль рамки выполняет ротор с катушками проводов, называемых обмотками, на которые подаётся ток (они служат источниками электромагнитного поля). А роль подковообразного магнита выполняет статор, изготовленный либо из набора постоянных магнитов, либо тоже из катушек проводов (обмоток), которые, при подаче тока являются также источниками электромагнитного поля.

Ротор синхронного электродвигателя будет вращаться с такой же частотой, с какой меняется ток, подаваемый на клеммы обмотки, т.е. синхронно. Отсюда название этого электродвигателя.

Объяснение принципа работы асинхронного электродвигателя для «чайников»

Вспоминаем описание рисунка в предыдущем примере. Та же рамка, расположенная между полюсами подковообразного магнита, только её концы не имеют полуколец, они соединены между собой.

Теперь начинаем вращать вокруг рамки подковообразный магнит. Вращаем его медленно и наблюдаем за поведением рамки. До некоторых пор рамка остаётся неподвижной, а потом, при повороте магнита на определённый угол, рамка начинает вращение вслед за магнитом. Вращение рамки запаздывает по сравнению со скоростью вращения магнита, т.е. она вращается не синхронно с ним – асинхронно. Вот и получается, что это примитивный асинхронный электродвигатель.

Вообще-то роль магнитов в настоящем асинхронном двигателе служат обмотки, расположенные в пазах статора, на которые подаётся ток. А роль рамки, выполняет ротор, в пазы которого вставлены металлические пластины, соединённые между собой на коротко. Поэтому такой ротор называется короткозамкнутым.

В чём же отличия синхронного и асинхронного электродвигателей?

Если поставить рядом два современных электродвигателя одного и другого типа, то по внешним признакам их отличить трудно даже специалисту.

По существу, их главное отличие рассмотрено в приведённых примерах принципов работы этих электродвигателей. Они отличаются по конструкции роторов . Ротор синхронного электродвигателя состоит из обмоток, а ротор асинхронного представляет собой набор пластин.

Статоры одного и другого электродвигателей почти неотличимы и представляют собой набор обмоток, однако, статор синхронного электродвигателя может быть набран из постоянных магнитов.

Обороты синхронного двигателя соответствуют частоте подаваемого на него тока, а обороты асинхронного несколько отстают от частоты тока.

Отличаются они и по сферам применения . Например, синхронные электродвигатели ставят для привода оборудования, которое работает с постоянной скоростью вращения (насосы, компрессоры и т.д.) не снижая её с увеличением нагрузки. А вот асинхронные электродвигатели снижают частоту вращения при увеличении нагрузки.

Синхронные электродвигатели конструктивно сложней, а значит, и дороже асинхронных электродвигателей.

Перевод электродвигателей с коллекторного узла управления на полупроводниковые устройства контроля позволил оптимизировать силовые агрегаты. Модернизация затронула и мощностные параметры, и конструкционные характеристики. Наиболее выраженным отличием стало уменьшение габаритов, что позволило использовать такие агрегаты в небольших по размерам приборах и установках. Типичным примером реализации бесколлекторного привода является вентильный двигатель, работающий в условиях постоянного тока. Он обеспечивает существенные технико-экономические преимущества в процессе эксплуатации, но не избавлен и от недостатков.

Конструкция и устройство двигателя

Техническая инфраструктура формируется двумя сегментами - непосредственно механикой и управляющим комплексом. С точки зрения конструкционного устройства агрегат во многом похож на традиционное наполнение электромеханических роторных двигателей. Соответственно, в состав электромотора входят ротор, статор и обмотка. Причем статор представляет собой набор из отдельных изолированных листов, выполненных из стального сплава. В процессе работы они способствуют понижению вихревых токов. В нем как раз и находится обмотка, которая может иметь разное количество фаз. Начинка элемента образована стальным сердечником, а обмотка представляет собой медные волокна. Для защиты применяется корпус, на поверхности которого также предусматриваются средства физического крепления.

Что касается ротора, то он сформирован постоянными магнитами. В зависимости от модификации, он может иметь до шестнадцати пар чередующихся полюсов. Прежде для изготовления роторов применялись ферритовые магниты, что было обусловлено их ценовой доступностью. Сегодня же на первый план выходят эксплуатационные характеристики вентильного двигателя - в частности крутящий момент, который варьируется от 1 до 70 Нм. Пропускная же частота в среднем находится в пределах 2-4 тыс. оборотов. Для достижения таких показателей требуется магнит с высокой степенью индукции, поэтому производители перешли на использование редкоземельных сплавов. Такие магниты не просто дают более высокую производительность, но и обладают меньшими размерами. Отчасти и этот переход способствовал оптимизации габаритов вентильного электродвигателя. Отдельно стоит рассмотреть компоненты управляющего сегмента.

Система управления

Если электромеханическая часть состоит преимущественно из трех компонентов, в числе которых ротор, статор и несущая конструкция в виде корпуса, то управляющая инфраструктура более сегментирована - количество элементов может достигать нескольких десятков. Другое дело, что их можно поделить на виды. В единственном числе будет представлен только инвертор. Он отвечает за функции коммутации, осуществляя подключение и переключение фаз. Основные же задачи контроля с подачей сигналов выполняют датчики. Главным из них является детектор положения ротора. Кроме этого, в состав управляющего блока вводится и система регуляции сигналов. Это узел с ключами, посредством которого реализуется связь датчиков и электромеханической начинки.

Информацию о позиции ротора обрабатывает микропроцессор. Внешне интерфейс этого блока представляет собой панель управления. На приеме она работает с сигналами широтно-импульсной модуляции (ШИМ-сигнал). Если предусматривается подача низковольтных сигналов, то в управляющем блоке устанавливается и транзисторный мост. Он преобразует сигнал в силовое напряжение, которое в дальнейшем подается на электродвигатель. Наличие датчиков с системой обработки импульсов как раз и отличает управление вентильным двигателем от средств контроля щеточно-коллекторных агрегатов. Другое дело, что возможность внедрения электронной аппаратуры с датчиками допускается и в коллекторных машинах наряду с механическими системами управления.

Принцип работы

Вентильный электродвигатель в процессе работы создает индукцию магнитных полюсов через ротор. На фоне генерации электромагнитного воздействия формируется сопротивление. Иными словами, активизируется функция ротора, после чего он передает крутящий момент целевому агрегату. В условиях переменной скорости магнетизм может быть оптимизирован для более производительной работы с реверсом. Опять же, датчик положения ротора сообщает данные для регуляции в соответствии с фазами напряжения. Гибкость и оперативность настройки параметров ротора и количества фаз позволяет эффективнее регулировать работу механизма. Весь цикл демонстрирует процесс преобразования электроэнергии в физическую мощь (механическая энергия), которую вырабатывает генератор. Причем если резко отсоединить агрегат от сети, то преобразуемая в данный момент энергия будет возвращена статору.

Важным условием поддержания достаточной производительности является стабильность двигателя. Критерием оценки этой характеристики будет его плавность, достигаемая понижением пульсаций. Для этого нужно знать вектор вращения потока статора, чтобы он был синхронен с функцией ротора. Координация разных потоков вращения как раз и достигается взаимодействием датчиков и коммутатора, которым управляются вентильные двигатели. Принцип работы этой связки позволяет с высокой точностью определять, к какой фазе нужно подключать ротор, определяя также оси. В нужной последовательности панель управления через микропроцессор попеременно подключает и отключает разные фазы.

Особенности синхронных моделей

Вышеописанный принцип работы как раз иллюстрирует работу синхронного двигателя. То есть в нем реализуется взаимодействие полюсов индуктора и статорного магнитного поля. Но и в таких системах могут быть свои различия. Например, и синхронный, и асинхронный двигатель могут оснащаться электромагнитами. В случае с синхронными агрегатами такого типа ток будет направляться на ротор, минуя контакт щетка-кольцо. Постоянные же магниты применяются в двигателях, базирующихся на жестких дисках. Также существуют и обращенные конструкции. В них якорные потоки находятся на роторе, а индукция - на статоре.

Для включения синхронного двигателя требуется высокий разгон по частоте, чтобы появилась возможность подстройки вращения двух функциональных компонентов. В конструкциях, где индуктор находится на статоре, поле ротора остается неподвижным относительно якоря. И напротив, если устройство предполагает обратную конструкцию, то «ввод в синхронизацию» будет осуществляться через ожидание статора. Момент ожидания зависит от того, с какой нагрузкой работает вентильный двигатель, и какая частота является оптимальной для активизации его индуктора.

Особенности асинхронных агрегатов

В асинхронных двигателях ротор не вращается в противоположном направлении. Его нельзя назвать обратным синхронному агрегату с точки зрения взаимодействия магнитных потоков ротора и статора. И синхронный, и асинхронный двигатель предполагают следование одного поля за другим. Другое дело, что во втором случае ротор, к примеру, может быть «догоняющим». Он следует за генерацией индукционного момента.

В стандартной конструкции статор генерирует электромагнитное поле, заставляя через определенное время вращаться и ротор. Принципиальным отличием между двумя типами двигателей является и то, что индуктор не является генератором возбуждения магнитного поля ротора. Поэтому вентильный электродвигатель асинхронного типа может автономно заставлять вращаться ротор с определенной частотой от обмотки статора. Это вовсе не значит, что два механизма работают отдельно, но их функции не так тесно взаимосвязаны, как в случае с синхронными двигателями. Это же касается и скорости. Например, если в синхронном агрегате будет частота вращения на 3000 об./мин для индуктора и ротора, то асинхронный принцип работы для того же ротора может снизить эту величину до 2910 об./мин.

Вентильно-индукторный двигатель

Можно сказать, что все вентильные электромоторы являются индукторными. В той или иной степени принцип индукции закладывается в синхронный и асинхронный агрегаты. Но есть также модели, в которых индукция способствует самонамагничиванию. Иначе эту машину можно назвать самовозбуждающейся. В традиционном исполнении вентильно-индукторный двигатель этого типа имеет простую конструкцию, питается от однополярных импульсов тока и работает с теми же датчиками ротора. Однако из-за нюансов энергоснабжения его нельзя подключать напрямую к сети. В итоге требуется введение в инфраструктуру специальных преобразователей.

С другой стороны, в данной конструкции присутствуют практически все достоинства синхронных агрегатов. Самым явным из них является широкий спектр частот вращения. Например, вентильно-реактивный двигатель с возможностью самовозбуждения способен выдавать порядка 100 тыс. оборотов. Это уже быстроходные электродвигатели, для которых используются комплектующие высокой степени прочности.

Разновидности агрегатов по количеству фаз

Простейшее исполнение такого электродвигателя - это однофазные агрегаты, которые предусматривают минимальное количество контактов между электронной аппаратурой и механикой. Соответственно, отсюда вытекают и слабые места конструкции, среди которых ограничения в положении ротора и сильные пульсации. Двухфазные модели способны формировать воздушный зазор, а также при определенных условиях обеспечивать асимметрию полюсов. Опять же, такие машины грешат высокой степенью пульсации, однако их можно использовать в тех случаях, когда связка статора с обмоткой является обязательным условием. Трехфазный вентильный двигатель характеризуется сочетанием невысокой скорости, но хорошей силовой отдачей. Поэтому его чаще используют как в сборке бытовых приборов, так и в изготовлении промышленной техники. Также существуют четырех- и шестифазные модели вентильных электромоторов, но это уже сегменты специализированных установок, которые дорого стоят и обладают крупными габаритами.

Преимущества электродвигателей

Благодаря конструкционной оптимизации вентильная силовая техника обеспечивает множество эксплуатационных преимуществ. В их числе стоит отметить быстродействие, гибкость в настройке, точность определения позиции ротора (с помощью датчика), широкие возможности технической подстройки и т.д. При скромных энергозатратах можно получить высокую силовую отдачу. Что еще важно, вентильный электродвигатель задействует небольшой ресурс механического действия, а это благоприятно сказывается и на его сроке эксплуатации. Низкий уровень термического воздействия на элементную базу обуславливает отсутствие перегревов, поэтому детали лишь в редких случаях требуют замены по причине износа.

Недостатки электродвигателя

Специалисты отмечают два основных минуса таких электродвигателей. В первую очередь это сложность конструкции. Не механической части, а именно электронной основы, которая обеспечивает управление мотором. Применение микропроцессоров, датчиков, инверторов и сопутствующей электротехнической фурнитуры требует соответствующего подхода к обеспечению надежности работы компонентов системы. Таким образом, повышается и стоимость обслуживания техники. Вместе с этим, отмечается и дороговизна магнитов, на которых базируется вентильный двигатель даже в простых однофазных исполнениях. На практике пользователи стараются заменять недешевые элементы и расходники, вместе с этим упрощая и систему управления. Но такие меры сами по себе требуют определенных ресурсов, не говоря о том, что снижается эффективность двигателя.

Заключение

Концепция использования электроники в составе традиционных роторных двигателей не всегда оправдывается в процессе эксплуатации. Связано это со сферами применения такого оснащения. Чаще всего это традиционные области производства, где совсем не обязательно подключение электронных систем управления. Инновационная начинка заставляет пересматривать производственные циклы, точечно модернизируя технологические процессы. К тому же стоимость двигателя, которая варьируется от 15 до 20 тыс. руб., не добавляет привлекательности этой продукции. Обычные аналоги на контроллерах с электромеханическими реле обходятся дешевле, не говоря о том, что их легче интегрировать в процессе сборки продукции.

И все же появляются направления, в которых высоко ценится именно полупроводниковое управление с датчиками роторов. Как правило, это высокотехнологичное оборудование, выпуском которого занимаются крупные компании. Причем на выходе они предоставляют продукцию разного уровня, в том числе и для бытового применения.

Всем известно, что основное предназначение электродвигателей – это преобразование электрической энергии в энергию механическую. Это обнаружил аж в 1821 году Майкл Фарадей, который проводил опыты с магнитами и магнитным полем. С тех пор прошло много времени, а электрические моторы заняли свое основное место в промышленности и быту. Без них сегодня никуда. В настоящее время производители электродвигателей предлагают большое количество моделей, различающихся по конструкции и принципу действия. Это двигатели постоянного и переменного тока, синхронные и асинхронные. Нас сегодня интересует именно синхронный и асинхронный двигатель – отличия.

Чтобы разобраться в отличиях, необходимо рассмотреть конструктивные особенности каждого типа моторов и понять принцип их работы.

Асинхронный электродвигатель

Итак, надо начать с рассмотрения конструкции асинхронной модели. Основное отличие от синхронной – это наличие трех обмоток в статоре, концы которых выводятся для подключения в клеммную коробку. Вторая основная часть мотора – ротор цельного типа, торцы которого замыкаются между собой, отсюда, в принципе, и название – короткозамкнутый.

Дополнением конструкции является крыльчатка, с помощью которой охлаждается двигатель. Устанавливается крыльчатка на вал (ротор) электрического мотора. Сам ротор держится и вращается в подшипниках, установленных в двух крышках корпуса. Обратите внимание, что именно подшипники и являются самым уязвимым местом агрегата. Именно они чаще всего выходят из строя. Правда, заменить их не очень сложно.

Принцип работы

По какому принципу работает асинхронный двигатель? Внутри корпуса мотора, где расположены обмотки статора, возникает магнитное поле, которое действует на ротор, заставляя его вращаться под действием возникшей электродвижущей силы. Но вращение ротора может быть только в том случае, если скорость вращения магнитного поля будет быстрее вращения самого вала двигателя. Если скорости будут одинаковыми, то электродвижущая сила не появится.

Но в любом случае этого произойти не может, потому что здесь несколько причин, сдерживающих скорость вращения ротора.

  • Трение в подшипниках.

Но самое главное, что магнитные полюса в асинхронном двигателе постоянно меняются, что влияет на смену направлений тока в статоре электродвигателя. То есть, в определенное время ток начинает вращаться «на нас», а в следующий промежуток «от нас». Именно поэтому такие двигатели называются асинхронными, у них просто нет стабильного направления тока.

Что касается скорости вращения ротора, то тут необходимо сделать одно замечание. Этот показатель будет зависеть от того, сколько полюсов одномоментно подключено к питанию. К примеру, максимальная скорость вращения вала будет при двух подключенных полюсах. Чтобы снизить данный показатель, необходимо добавить еще два полюса, то есть, увеличить их вдвое.

И еще один недостаток. Асинхронные двигатели при работе обладают разной скоростью вращения вала. К примеру, на холостом ходу это может быть одна величина, при нагрузке она резко снижается. По сути, получается так, что изменение частоты тока влияет на скорость вала. Другого способа изменить скорость вращения не существует.

Синхронный электродвигатель

Итак, синхронный электродвигатель – это мотор с постоянной скоростью вращения ротора, плюс возможность регулировать эту скорость. Устройство синхронного мотора достаточно сложное. Чтобы в нем разобраться, необходимо рассмотреть фотографию ниже.

Здесь четко показано, что обмотки двигателя располагаются на якоре или роторе агрегата. Концы обмоток выведены и закреплены на токосъемное кольцо, а, точнее, к его секторам. Сам же ток подается на это же кольцо только через графитовые щетки, которые подключены к питающей сети.

Внимание! Концы обмоток подключаются таким образом, что при работе мотора через щетки электрический ток попадал всегда только на одну пару.

У двигателя этой модели больше уязвимых мест, чем у асинхронной.

  • Снашиваются графитные щетки.
  • Плохой контакт между токосъемным кольцом и щетками за счет ослабления пружины, которая прижимает последние к кольцу (коллектору).
  • Изнашиваются подшипники.
  • Образование грязевого налета на поверхности токосъемного кольца.

Теперь переходим к другой позиции – принцип работы синхронного электродвигателя. Вращающийся момент внутри мотора образуется за счет взаимодействия магнитного поля, которое образуется в обмотках возбуждения, и тока, проходящего по якорю агрегата. Но тут есть один момент – изменяющееся направление тока (переменного) будет менять и направление вращения магнитного поля двигателя. Правда, смена вращения будет меняться и в корпусе аппарата, и на якоре одновременно. Вот почему вращение ротора мотора всегда происходит с одинаковой скоростью.

Именно поэтому изменить эту величину можно лишь тем, если изменить напряжение подаваемой на щетки электроэнергии. Вспомните пылесосы, где всасываемую мощность изменяют переключателем, который просто соединен с реостатом. А мощность пылесоса зависит от скорости вращения вала крыльчатки, то есть вала электродвигателя. Чем больше скорость, тем больше мощность всасывания.

Но синхронные электродвигатели в промышленности своего основного места не нашли. Здесь в основном используются асинхронные модели.

Какой лучше

Итак, в статье были разобраны устройство и принцип действия двух видов электродвигателей. Говорить о том, что какой-то из них лучше, нельзя. Но отметим, что асинхронные модели проще в конструктивном аспекте. Они надежнее в эксплуатации. Если их не перегружать, то срок службы может быть очень длительным. К сожалению, синхронные виды этим похвастаться не могут. Графитовые щетки быстро изнашиваются, им требуется замена. Но если не уследить, и графит сотрется полностью, то металлические держатели щеток начнут истирать токосъемное кольцо. А его выход из строя – это не только полный выход из строя двигателя, это большое количество искр (трение металла о металл) и возможность появления более серьезных неприятностей.

Электродвигатели можно разделить на две основные категории – синхронные и асинхронные (индукционные) двигатели. Эти два вида довольно сильно отличаются друг от друга. Разница уже видна в самих названиях. Отличить агрегаты можно по выбитому на шильдике количеству оборотов (если там не указан тип мотора), у ассинхронного мотора неокруглённое число (например, 950 об/мин), у синхронного округлённое (1000 об/мин).

Есть и другие важные различия, в этой статье мы рассмотрим наиболее показательные из них: конструктивные, рабочие и ценовые.

Любой двигатель состоит из двух элементов: неподвижного и вращающегося. Статор имеет осевые прорези - пазы, на дно которых укладываются токонесущие медные или алюминиевые проводки. У электродвигателя на валу крепится ротор с обмоткой возбуждения.

Принципиальным отличием между синхронными и асинхронными двигателями являются роторы, точнее, их исполнение.

У синхронных моделей при малых мощностях они представляют собой постоянные магниты.

Переменное напряжение подаётся на обмотку статора, ротор подключается к постоянному источнику питания. Проходящий по обмотке возбуждения постоянный ток наводит магнитное поле статора. Крутящий момент создаётся из-за угла запаздывания между полями. Ротор имеет такую же скорость, как и магнитное поле статора.

Агрегаты используются на практике и как генераторы и как двигатели.

Асинхронные модели – это достаточно недорогие двигатели, которые применяются часто и всюду. Они проще в конструктивном плане, несмотря на то, что неподвижные части в принципе у всех моторов похожи.

По обмотке статора пропускается переменный электроток, который взаимодействует с роторной обмоткой. Два поля вращаются с одинаковой скоростью в одном направлении, но не могут быть равными, иначе бы не создавалась индуцированная ЭДС и, тем более крутящийся момент. Это становится причиной возникновения индуцированного тока в обмотке роторе, направление которого согласно правилу Ленца таково, что он склонен противостоять причине своего производства, т. е. скорости скольжения.

Скорость вращения ротора не совпадает со скоростью магнитного поля, она всегда меньше. Таким образом, ротор пытается догнать скорость вращающегося магнитного поля и уменьшить относительную скорость.

Основные достоинства и недостатки

  1. Асинхронные агрегаты не требуют какого-либо дополнительного источника питания. Синхронным необходим дополнительный источник постоянного тока для подачи напряжения на обмотки.
  2. Синхронники обладают относительно невысокой чувствительностью к перепадам сетевого напряжения и стабильностью вращения вне зависимости от нагрузки.
  3. Индукционные двигатели не требуют наличия контактных колец, за исключением двигателей с фазным ротором, которые их имеют для плавного пуска или регулирования скорости. В синхронных двигателях больше уязвимых мест, так как используются контактные кольца со щетками. Следовательно, детали быстрее изнашиваются и контакт между ними ослабевает.
  4. Синхронники нуждаются во вспомогательных пусковых механизмах, так как не обладают функцией самопуска. Для индукционных электродвигателей, имеющих собственные пусковые моменты, такой механизм не требуется.

Какой агрегат лучше

В заключение нужно отметить, что говорить, якобы один мотор лучше другого, нельзя. Однако, асинхронные модели надежнее в эксплуатации, отличаются простотой конструкции. Если агрегаты не перегружать, то их длительным сроком службы пользователь может остаться довольным.

Последние материалы раздела:

Смотреть что такое
Смотреть что такое "душевный мир" в других словарях

Энциклопедический словарь 1. МИР, а; мн. миры, ов; м. 1. Совокупность всех форм материи в земном и космическом пространстве; Вселенная....

Наталья СтепановаМолитвенный щит
Наталья СтепановаМолитвенный щит

Все дело в том, дорогие мои, что Господь Бог наделил меня искренней любовью к людям. Этому меня учила и моя бабушка. Если говорить совсем кратко,...

Сонник: к чему снится Лошадь
Сонник: к чему снится Лошадь

Во сне дано не каждому, ведь это сильное, свободолюбивое животное может запросто скинуть своего наездника. Сон, в котором сновидец скачет на...