Драйвер шагового двигателя с ручным управлением. Как работает шаговый электродвигатель? Как выбирать напряжение для шагового двигателя

Для работы практически всех электрических приборов, необходимы специальные приводные механизмы. Предлагаем рассмотреть, что такое шаговый двигатель, его конструкцию, принцип работы и схемы подключения.

Что такое шаговый двигатель?

Шаговый двигатель представляет собой электрическую машину, предназначенную для преобразования электрической энергии сети в механическую энергию. Конструктивно состоит из обмоток статора и магнитомягкого или магнитотвердого ротора. Отличительной особенностью шагового двигателя является дискретное вращение, при котором заданному числу импульсов соответствует определенное число совершаемых шагов. Наибольшее применение такие устройства получили в станках с ЧПУ, робототехнике, устройствах хранения и считывания информации.

В отличии от других типов машин шаговый двигатель совершает вращение не непрерывно, а шагами, от чего и происходит название устройства. Каждый такой шаг составляет лишь часть от его полного оборота. Количество необходимых шагов для полного вращения вала будет отличаться, в зависимости от схемы соединения, марки двигателя и способа управления.

Преимущества и недостатки шагового электродвигателя

К преимуществам эксплуатации шагового двигателя можно отнести:

  • В шаговых электродвигателях угол поворота соответствует числу поданных электрических сигналов, при этом, после остановки вращения сохраняется полный момент и фиксация;
  • Точное позиционирование – обеспечивает 3 – 5% от установленного шага, которая не накапливается от шага к шагу;
  • Обеспечивает высокую скорость старта, реверса, остановки;
  • Отличается высокой надежностью за счет отсутствия трущихся компонентов для токосъема, в отличии от коллекторных двигателей;
  • Для позиционирования шаговому двигателю не требуется обратной связи;
  • Может выдавать низкие обороты для непосредственно подведенной нагрузки без каких-либо редукторов;
  • Сравнительно меньшая стоимость относительно тех же ;
  • Обеспечивается широкий диапазон управления скоростью оборотов вала за счет изменения частоты электрических импульсов.

К недостаткам применения шагового двигателя относятся:

  • Может возникать резонансный эффект и проскальзывание шагового агрегата;
  • Существует вероятность утраты контроля из-за отсутствия обратной связи;
  • Количество расходуемой электроэнергии не зависит от наличия или отсутствия нагрузки;
  • Сложности управления из-за особенности схемы

Устройство и принцип работы

Рис. 1. Принцип действия шагового двигателя

На рисунке 1 изображены 4 обмотки, которые относятся к статору двигателя, а их расположение устроено так, что они находятся под углом 90º относительно друг друга. Из чего следует, что такая машина характеризуется размером шага в 90º.

В момент подачи напряжения U1 в первую обмотку происходит перемещение ротора на те же 90º. В случае поочередной подачи напряжения U2, U3, U4 в соответствующие обмотки, вал продолжит вращение до завершения полного круга. После чего цикл повторяется снова. Для изменения направления вращения достаточно изменить очередность подачи импульсов в соответствующие обмотки.

Типы шаговых двигателей

Для обеспечения различных параметров работы важна как величина шага, на который будет смещаться вал, так и момент, прилагаемый для перемещения. Вариации данных параметров достигаются за счет конструкции самого ротора, способа подключения и конструкции обмоток.

По конструкции ротора

Вращаемый элемент обеспечивает магнитное взаимодействие с электромагнитным полем статора. Поэтому его конструкция и технические особенности напрямую определяют режим работы и параметры вращения шагового агрегата. Чтобы на практике определить тип шагового мотора, при обесточенной сети необходимо провернуть вал, если ощущаете сопротивление, то это свидетельствует о наличии магнита, в противном случае, это конструкция без магнитного сопротивления.

Реактивный

Реактивный шаговый двигатель не оснащается магнитом на роторе, а выполняется из магнитомягких сплавов, как правило, его набирают из пластин для уменьшения потерь на индукцию. Конструкция в поперечном разрезе напоминает шестерню с зубцами. Полюса статорных обмоток запитываются противоположными парами и создают магнитную силу для перемещения ротора, который двигается от попеременного протекания электрического тока в обмоточных парах.


Весомым плюсом такой конструкции шагового привода является отсутствие стопорящего момента, образуемого полем по отношению к арматуре. По факту это тот же , в котором поворот ротора идет в соответствии с полем статора. Недостатком является снижение величины вращающего момента. Шаг для реактивного двигателя колеблется от 5 до 15°.

С постоянными магнитами

В этом случае подвижный элемент шагового двигателя собирается из постоянного магнита, в котором может быть два и большее количеством полюсов. Вращение ротора обеспечивается притяжением или отталкиванием магнитных полюсов электрическим полем при подаче напряжения в соответствующие обмотки. Для этой конструкции угловой шаг составляет 45-90°.


Гибридные

Был разработан с целью объединения лучших качеств двух предыдущих моделей, за счет чего агрегат обладает меньшим углом и шагом. Его ротор выполнен в виде цилиндрического постоянного магнита, который намагничен по продольной оси. Конструктивно это выглядит как два круглых полюса, на поверхности которых расположены зубцы ротора из магнитомягкого материала. Такое решение позволило обеспечить отличный удерживающий и крутящий момент.


Преимущества гибридного шагового двигателя заключатся в его высокой точности, плавности и скорости перемещения, малым шагом – от 0,9 до 5°. Их применяют для высококлассных станков ЧПУ, компьютерных и офисных приборах и современной робототехнике. Единственным недостатком считается относительно высокая стоимость.

Для примера разберем вариант гибридных ШД на 200 шагов позиционирования вала. Соответственно каждый из цилиндров будет иметь по 50 зубцов, один из них является положительным полюсом, второй отрицательным. При этом каждый положительный зубец расположен напротив паза в отрицательном цилиндре и наоборот. Конструктивно это выглядит так:


Из-за чего на валу шагового двигателя получается 100 перемежающихся полюсов с отличной полярностью. Статор также имеет зубцы, как показано на рисунке 6 ниже, кроме промежутков между его компонентами.


Рис. 6. Принцип работы гибридного ШД

За счет такой конструкции можно достичь смещения того же южного полюса относительно статора в 50 различных позиций. За счет отличия положения в полупозиции между северным и южным полюсом достигается возможность перемещения в 100 позициях, а смещение фаз на четверть деления предоставляет возможность увеличить количество шагов за счет последовательного возбуждения еще вдвое, то есть до 200 шагов углового вала за 1 оборот.

Обратите внимание на рисунок 6, принцип работы такого шагового двигателя заключается в том, что при попарной подаче тока в противоположные обмотки происходит подтягивание разноименных полюсов ротора, расположенных за зубьями статора и отталкивание одноименных, идущих перед ними по ходу вращения.

По виду обмоток

На практике шаговый двигатель представляет собой многофазный мотор. Плавность работы в котором напрямую зависит от количества обмоток – чем их больше, тем плавне происходит вращение, но и выше стоимость. При этом крутящий момент от числа фаз не увеличивается, хотя для нормальной работы их минимальное число на статоре электродвигателя должно составлять хотя бы две. Количество фаз не определяет числа обмоток, так двухфазный шаговый двигатель может иметь четыре и более обмотки.

Униполярный

Униполярный шаговый двигатель отличается тем, что в схеме подключения обмотки имеется ответвление от средней точки. Благодаря чему легко меняются магнитные полюса. Недостатком такой конструкции является использование только одной половины доступных витков, из-за чего достигается меньший вращающий момент. Поэтому они отличаются большими габаритами.


Для использования всей мощности катушки средний вывод оставляют не подключенным. Рассмотрите конструкции униполярных агрегатов, они могут содержать 5 и 6 выводов. Их количество будет зависеть от того, выводится срединный провод отдельно от каждой обмотки двигателя или они соединяются вместе.


Биполярный

Биполярный шаговый двигатель подключается к контроллеру через 4 вывода. При этом обмотки могут соединяться внутри как последовательно, так и параллельно. Рассмотрите пример его работы на рисунке.


В конструктивной схеме такого двигателя вы видите с одной обмоткой возбуждения в каждой фазе. Из-за этого смена направления тока требует использовать в электронной схеме специальные драйверы (электронные чипы, предназначенные для управления). Добиться подобного эффекта можно при помощи включения Н-моста. В сравнении с предыдущим, биполярное устройство обеспечивает тот же момент при гораздо меньших габаритах.

Подключение шагового двигателя

Чтобы запитать обмотки, потребуется устройство способное выдать управляющий импульс или серию импульсов в определенной последовательности. В качестве таких блоков выступают полупроводниковые приборы для подключения шагового двигателя, микропроцессорные драйвера. В которых имеется набор выходных клемм, каждая из них определяет способ питания и режим работы.

В зависимости от схемы подключения должны применяться те или другие выводы шагового агрегата. При различных вариантах подведения тех или иных клемм к выходному сигналу постоянного тока получается определенная скорость вращения, шаг или микрошаг линейного перемещения в плоскости. Так как для одних задач нужна низкая частота, а для других высокая, один и тот же двигатель может задавать параметр за счет драйвера.

Типичные схемы подключения ШД

В зависимости того, какое количество выводов представлено на конкретном шаговом двигателе: 4, 6 или 8 выводов, будет отличаться и возможность использования той или иной схемы их подключения Посмотрите на рисунки, здесь показаны типичные варианты подключения шагового механизма:


Схемы подключения различных типов шаговых двигателей

При условии запитки основных полюсов шаговой машины от одного и того же драйвера, по данным схемам можно отметить следующие отличительные особенности работы:

  • Выводы однозначно подводятся к соответствующим клеммам устройства. При последовательном соединении обмоток увеличивает индуктивность обмоток, но понижает ток.
  • Обеспечивает паспортное значение электрических характеристик. При параллельной схеме увеличивается ток и снижается индуктивность.
  • При подключении по одной фазе на обмотку снижется момент на низких оборотах и уменьшает величину токов.
  • При подключении осуществляет все электрические и динамические характеристики согласно паспорта, номинальный токи. Значительно упрощается схема управления.
  • Выдает куда больший момент и применяется для больших частот вращения;
  • Как и предыдущая предназначена для увеличения момента, но применяется для низких частот вращения.

Управление шаговым двигателем

Выполнение операций шаговым агрегатом может осуществляться несколькими методами. Каждый из которых отличается способом подачи сигналов на пары полюсов. Всего выделяют тир метода активации обмоток.

Волновой – в таком режиме происходит возбуждение только одной обмотке, к которой и притягиваются роторные полюса. При этом шаговый двигатель не способен вытягивать большую нагрузки, так как выдает лишь половину момента.


Полношаговый — в таком режиме происходит одновременная коммутация фаз, то есть, возбуждаются сразу обе. Из-за чего обеспечивается максимальный момент, в случае параллельного соединения или последовательного включения обмоток будет создаваться максимальное напряжение или ток.


Полушаговый – представляет собой комбинацию двух предыдущих методов коммутации обмоток. Во время реализации которого в шаговом двигателе происходит поочередная подача напряжения сначала в одну катушку, а затем сразу в две. Благодаря чему обеспечивается лучшая фиксация на максимальных скоростях и большее количество шагов.


Для более мягкого управления и преодоления инерции ротора используется микрошаговое управление, когда синусоида сигнала осуществляется микроступенчатыми импульсами. За счет чего силы взаимодействия магнитных цепей в шаговом двигателе получают более плавное изменение и, как следствие, перемещение ротора между полюсами. Позволяет в значительной степени снизить рывки шагового двигателя.

Без контроллера

Для управления бесколлекторными двигателями применяется система Н-моста. Который позволяет переключать полярность для реверса шагового двигателя. Может выполняться на транзисторах или микросхемах, которые создают логическую цепочку для перемещения ключей.


Как видите, от источника питания V напряжение подается на мост. При попарном включении контактов S1 – S4 или S3 – S2 будет происходить движение тока через обмотки двигателя. Что и обусловит вращение в ту или иную сторону.

С контроллером

Устройство контроллера позволяет осуществлять управление шаговым двигателем в различных режимах. В основе контроллера лежит электронный блок, формирующий группы сигналов и их последовательность, посылаемых на катушки статора. Для предотвращения возможности его повреждения в случае короткого замыкания или другой аварийной ситуации на самом двигателе каждый вывод защищается диодом, который не пропусти импульс в обратную сторону.


Подключение через контроллер однополярного шагового двигателя

Популярные схемы управления ШД


Схема управления от контроллера с дифференциальным выходом

Является одним из наиболее помехозащищенных способов работы. При этом прямой и инверсный сигнал напрямую подключается к соответствующим полюсам. В такой схемы должно применяться экранирование сигнального проводника. Прекрасно подходит для нагрузки с низкой мощностью.


Схема управления от контроллера с выходом типа «открытый коллектор»

В данной схеме происходит объединение положительных вводов контроллера, которые подключаются к положительному полюсу. В случае питания выше 9В требуется включение в схему специального резистора для ограничения тока. Позволяет задавать необходимое количество шагов со строго установленной скоростью, определить ускорение и т.д.

Простейший драйвер шагового двигателя своими руками

Чтобы собрать схему драйвера в домашних условиях могут пригодиться некоторые элементы от старых принтеров, компьютеров и другой техники. Вам понадобятся транзисторы, диоды, резисторы (R) и микросхема (RG).


Для построения программы руководствуйтесь следующим принципом: при подаче на один из выводов D логической единицы (остальные сигнализируют ноль) происходит открытие транзистора и сигнал проходит к катушке двигателя. Таким образом, выполняется один шаг.

На основе схемы составляется печатная плата, которую можно попытаться изготовить самостоятельно или сделать под заказ. После чего на плате впаиваются соответствующие детали. Устройство способно управлять шаговым устройством от домашнего компьютера за счет подключения к обычному USB порту.

Полезное видео



У меня много различной оргтехники, которая вышла из строя. Выбрасывать я её не решаюсь, а вдруг пригодится. Из её частей возможно сделать что-нибудь полезное.
К примеру: шаговый двигатель, который так распространен, обычно используется самодельщиками как мини генератор для фонарика или ещё чего. Но я практически никогда не видел, чтобы его использовали именно как двигатель для преобразования электрической энергии в механическую. Оно и понятно: для управления шаговым двигателем нужна электроника. Его просто так к напряжению не подключишь.
И как оказалось - я ошибался. Шаговый двигатель от принтера или ещё от какого устройства, довольно просто запустить от переменного тока.
Я взял вот такой двигатель.


Обычно у них четыре вывода, две обмотки. В большинстве случаем, но есть и другие конечно. Я рассмотрю самый ходовой.

Схема шагового двигателя

Его схема обмоток выглядит примерно так:


Очень похоже на схему обычного асинхронного двигателя.
Для запуска понадобится:
  • Конденсатор емкостью 470-3300 мкФ.
  • Источник переменного тока 12 В.
Замыкаем обмотки последовательно.


Середину проводов скручиваем и запаиваем.


Подключаем конденсатор одним выводом к середине обмоток, а вторым выводом в источнику питания на любой выход. Фактически конденсатор будет параллелен одной из обмоток.



Подаем питание и двигатель начинает крутиться.


Если перекинуть вывод конденсатора с одного выхода питания на другой, то вал двигателя начнет вращаться в другую сторону.


Все предельно просто. А принцип работы этого всего очень прост: конденсатор формирует сдвиг фаз на одной из обмоток, в результате обмотки работают почти попеременно и шаговый двигатель крутится.
Очень жалко то, что обороты двигателя невозможно регулировать. Увеличение или уменьшение питающего напряжения ни к чему не приведет, так как обороты задаются частотой сети.
Хотелось бы добавить, что в данном примере используется конденсатор постоянного тока, что является не совсем правильным вариантом. И если вы решитесь использовать такую схему включения, берите конденсатор переменного тока. Его так же можно сделать самому, включив два конденсатора постоянного тока встречно-последовательно.

Сморите видео

Большинство на начальном этапе останавливается на выборе покупного (чаще всего — китайского) контроллера для шаговых двигателей, потому как это экономит время. Но уже после того, как станок готов и запущен, начинает закрадываться ощущение, что что-то не то… Чего-то не хватает или что-то сделано не правильно, или не доделано… Появляется некоторое недовольство, вопросы, связанные с точностью станка с ЧПУ. Люди начинают долго и мучительно читать форумы в поисках волшебного рецепта исцеления своего родного станочка от постоянного непопадания «в десятку» (имеются в виду десятые доли миллиметра, которые должен стабильно отрабатывать даже самый пластилиновый станок с ЧПУ, сделанный своими руками).

Моя бабушка всегда говорит: «Где узко, там и рвется». И так действительно происходит! Это же справедливо и для основы основ станка с ЧПУ — механизма линейного перемещения и электроники управления, а именно — контроллера шагового двигателя. О какой точности можно говорить, если человек поставил дешевый китайский контроллер, включил на нем микрошаг 1/8 или даже 1/16 и пытается выдавить из станка микронные перемещения?

Я ничего не имею против китайских контроллеров. У меня самого стоит сейчас самый дешевый китайский контроллер. Но его я брал осознанно, чтобы понять, чего мне не хватает в промышленном контроллере и что я хочу получить в итоге, создавая контроллер шагового двигателя своими руками.

Первое, что я хочу получить от своего контроллера шагового двигателя — это калиброванный микрошаг, который бы настраивался под конкретный экземпляр шагового двигателя. О нелинейности характеристик шаговых двигателей я уже писал в своей статье про и . Если вам лень перейти по ссылке, то вкратце скажу, что в режиме микрошага вы посылаете двигателю команду повернуться на 1/8 шага (к примеру), а он поворачивается вообще не известно на сколько или вообще не поворачивается! Все это как раз из-за нелинейности характеристики шагового двигателя. Вот почему нельзя использовать микрошаговый режим в обычных китайских контроллерах для повышения точности (разрешающей способности) перемещений своего станка с ЧПУ!

Кто-то, возможно, задастся вопросом — откуда берется эта нелинейность? А все дело в том, что на самом деле шаговый двигатель вообще не предназначен для работы в режиме микрошага ! Шаговый двигатель предназначен только для того, чтобы шагать — ать, два! Это мы — ЧПУшники от своей голытьбы решили привнести в мир цифрового двигателя (двигателя с конечными состояниями) немного аналоговости и придумали «микрошаг», в котором шаговый двигатель «зависает» в некотором промежуточном состоянии между двумя шагами. А производители контроллеров радостно подхватили эту фишку и преподносят микрошаг, как некий стандарт де-факто! И впаривают свои контроллеры невдумчивым потребителям.

Если вы — «счастливый» обладатель контроллера с микрошагом, то сказанное мной выше вы сможете сами очень легко проверить по методу лазерной калибровки, описанному мной выше в статье про калибровку шагового двигателя. Достаточно снять со станка шаговик, приделать к нему лазерную указку, включить в контроллере режим микрошага (хотя он, конечно же, у вас включен!) и подавать ему на вход импульсы STEP. Можно прямо из Mach3 или LinuxCNC, выбрав самую минимальную подачу в ручном режиме или задавая микро-перемещения через G-коды. После каждого микрошага делайте отметки на листе бумаги, закрепленному на стене скотчем, в том месте, куда светит луч лазера. Уже после нескольких микрошагов, вы заметите, что между насечками получилось ну просто неприлично разное расстояние!

Закончим на этом ругать производителей. Они на самом деле ничего плохого не делают. Люди хотели микрошаг — люди его получили! Сосредоточимся лучше на том, чего на самом деле хотели получить конечные пользователи от своего контроллера шагового двигателя? А хотели они получить не деление управляющего шаговыми двигателями сигнала на 8, на 16 и т.д., а деление угла поворота шагового двигателя на указанные делители! Но какое же для этого нужно подавать управляющее напряжение? Отвечу однозначно — хрен его знает! Поясню… Дело в том, что разные производители делают разные двигатели, применяют разные технологии с разным качеством и разной погрешностью. И получается так, что все шаговые двигатели разные! Даже в пределах одного типа и одной партии. Легла где-то в обмотке шагового двигателя проволочка слегка не на ту сторону — характеристика поменялась! У одного двигателя X витков, у другого двигателя X+Y витков в обмотке — опять характеристики разные. Ну и так далее — до фанатизма

Именно поэтому микрошаг нужно настраивать под каждый конкретный двигатель, и это должно настраиваться в контроллере шагового двигателя! И именно такой контроллер я сейчас и разрабатываю.

Схема контроллера шаговых двигателей

Схема моего контроллера будет очень проста. Силовыми элементами, непосредственно управляющими обмотками двигателя, будут являться ключевые MOSFET-транзисторы, подключенные в виде Н-моста. Ключами будет управлять микроконтроллер. Никаких дорогостоящих микросхем-драйверов в моей схеме не будет. Вместо них будет парочка ферритовых колечек из сгоревших энергосберегающих ламп, которые отлично подходят для управления затворами MOSFET-транзисторов. В общем, я стараюсь сделать контроллер шагового двигателя доступным для повторения в домашних условиях. Также одним из его достоинств будет являться высокая ремонтопригодность (например, если сгорит какой-либо MOSFET-транзистор в силовой части, то стоимость замены составит ~20-30 рублей).

Слева представлена схема управления затвором силового MOSFET-ключа моего контроллера шаговых двигателей. Как видно, управление затвором осуществляется через повышающий импульсный трансформатор на ферритовом кольце. Повышающий трансформатор нужен, чтобы силовой ключ полностью открывался от 5-тивольтового сигнала управления, поступающего с выхода микроконтроллера. Для полного гарантированного открытия силовым MOSFET-ам обычно требуется от 10 вольт (более детально характеристику MOSFET-а можно посмотреть на графиках в его datasheet). Особенность такого включения заключается в том, что емкость затвора MOSFET используется в режиме памяти, т.е. при прохождении открывающего импульса через диод D1, транзистор будет открыт сколь угодно долго до тех пор, пока его не закроет открывшийся транзистор Q2, разрядив емкость затвора на «землю». Благодаря такой схеме при управлении ШИМ-сигналом (PWM) удается получить до 100% глубины модуляции (в англоязычных источниках — duty circle или «цикл загрузки»). В стандартной же схеме включения трансформатора затвора (GDT — gate drive transformer), когда положительный импульс открывает MOSFET, а следующий за ним отрицательный импульс восстановления разряжает емкость затвора, удается получить лишь менее 50% периода ШИМ-сигнала.

Программа управления шаговым двигателем

Программа управления шаговым двигателем может быть условно разделена на несколько взаимосвязанных функциональных блоков. Подробнее об этих блоках и о их работе я постараюсь написать в ближайшее время. Следите за обновлениями — проект находится в активной разработке

Written By: . Tagged: , .

Post navigation

  • Итак, задумывая драйвер на полевиках для биполярников, я и не думал что тема вызовет такой интерес и придется писать маленькую статью по сборке и настройке. Здесь будет рассматриваться драйвер как отдельный блок. Т.к. я использую блочную конструкцию. Т.е. три драйвера, интерфейсная плата, блок питания. Во первых при выходе из строя одного драйвера, просто меняется драйвер на запасной, а во вторых (и главное) планируется модернизация, мне проще снять один драйвер, и поставить модернизируемый вариант для обкатки. «Одноплатник» это уже развитие темы, и на вопросы по настройке ИБП я думаю с удовольствием ответит Dj _ smart , а также дополнит и поправит мой труд. А теперь к делу…

    Пункт первый (набившим плату можно не читать J ). После травления, лужения, и сверловки, внимательно осмотрите всю плату на предмет косяков. Сопли, протравленные дорожки, и т.д. могут серьезно обломать весь кайф. Далее набиваем плату, сначала все перемычки, затем сопротивления, диоды, панели, емкости и биполярные транзисторы. Хочу обратить особое внимание на Ваше внимание, извините за… Не ленитесь перед впайкой проверить деталь на исправность. Прозвонка иногда спасает от дыма… Я зная цветовую кодировку резисторов на ура, подкалывался несколько раз, причем со спец. эффектами. Когда используешь резисторы из загашников которые годами выпаивались из всего что под руку попадет, забываешь, что при нагреве красный может стать оранжевым, а оранжевый - желтым… Впаиваем провода питания +5В, степ, GND , и провода контроля Vref . Примерно вот так это выглядит:

    Пункт второй (настраиваем режимы работы и удержания). 555 я лично впаиваю в плату, кто поставил панель, значит втыкаем, блок индикации должен быть отключен. Подстроечники на середину. Вывод степ замыкаем на общий (раб. режим). Прозваниваем цепь +5В и если нет короткого, включаем питание. Тестер подключен к контрольным точкам Vref (молодец Dj _ smart , предусмотрел на плате), если номиналы подстроечников и сопротивления между ними соответствуют схеме, то подстроечником раб. режима можно регулировать напряжение около 0 - 1В т.е. ток 0 - 5А. Настроим на 1А. Тут все просто. R изм. у нас 0,2 Ом. Нам нужен 1А. 0,2х1=0,2В. Т.е. если мы установим Vref - 0,2В, ток в обмотке будет 1А. Если нам нужен ток в обмотке скажем 2,5А, то Vref =0,2х2,5=0,5В.

    Короче мы выставили 0,2В.

    Теперь размыкаем степ и общ. Если все элементы в норме и по схеме, то после размыкания примерно через полсекунды Vref снизится вдвое (если второй подстроечник посередине) Настраиваем им Vref удержания. У меня 50 проц. от рабочего:

    Главное обратите внимание на обязательную задержку при переключении. При замыкании степ на общий, мгновенно должен включаться рабочий режим, а при размыкании уходить на удержание с задержкой 0.5с. Если задержки нет ищите проблемы, иначе при работе будут не хилые глюки. Если не заводится, идите в тему форума, не устраивайте пожаров J .

    Пункт третий (настраиваем блок индикации). Печатка разведена под 315-361, как и у Dj _ smarta тоже мешок, надо куда то паять… Но в принципе туда можно паять любую пару, из наших я испытывал 502 - 503, 3102 - 3107, все пашет, только будьте внимательны с цоколевкой! Если все правильно впаяно и рабочее, то работает без проблем. Индикация вносит небольшую корректировку в Vref , так что после подключения индикации, окончательно отрегулируйте ток под свой ШД (лучше для начала 70% от номинального). Фотки как горят светодиоды делать не стал J .

    Пункт четвертый, важный (297) Выключив питание втыкаем 297 на свое место. Еще раз проверяем монтаж, и элементы обвязки, если все ОК (при любом сомнении проверяем дважды) врубаем питание. Проверяем осциллографом сигнал на первой ноге, он такой:

    Либо на 16 ноге, он такой:

    Это означает что шим запустился, счастливчики имеющие частотомер могут померить частоту, она очень приблизительно должна соответствовать 20кГц.

    ВНИМАНИЕ!!! Это важно!!! Даже если шим не запустится, логическая часть 297 будет работать, т.е. при подключении нагрузки все сигналы пойдут… Но прикиньте 24В без шима на ШД 2Ом. Так что важно убедиться в запуске генератора микросхемы.

    Пункт пятый. Опять выключаем питание и вставляем IR , впаиваем полевики. При использовании ШД с током обмотки более 2,5А, необходимо полевики вынести на радиатор. Обратите внимание при впайке диодов, они могут различаться по меткам. Мне правда не встречалось (у меня в перемешку 522 и 1 N 4148 (аналог) у них цоколевка совпадает) Но учитывая что людям IR

    Краткое введение в теорию и типы драйверов, советы по подбору оптимального драйвера для шагового двигателя.

    Если вы хотите купить драйвер шагового двигателя , нажмите на информер справа


    Некоторые сведения, которые могут помочь вам выбрать драйвер шагового двигателя .

    Шаговый двигатель – двигатель со сложной схемой управления, которому требуется специальное электронное устройство – драйвер шагового двигателя. Драйвер шагового двигателя получает на входе логические сигналы STEP/DIR, которые, как правило, представлены высоким и низким уровнем опорного напряжения 5 В, и в соответствии с полученными сигналами изменяет ток в обмотках двигателя, заставляя вал поворачиваться в соответствующем направлении на заданный угол. >Сигналы STEP/DIR генерируются ЧПУ-контроллером или персональным компьютером, на котором работает программа управления типа Mach3 или LinuxCNC.

    Задача драйвера – изменять ток в обмотках как можно более эффективно, а поскольку индуктивность обмоток и ротор гибридного шагового двигателя постоянно вмешиваются в этот процесс, то драйверы весьма отличаются друг от друга своими характеристиками и качеством получаемого движения. Ток, протекающий в обмотках, определяет движение ротора: величина тока задает крутящий момент, его динамика влияет на равномерность и т.п.

    Типы (виды) драйверов ШД


    Драйверы делятся по способу закачки тока в обмотки на несколько видов:

    1) Драйверы постоянного напряжения

    Эти драйверы подают постоянный уровень напряжения поочередно на обмотки, результирующий ток зависит от сопротивления обмотки, а на высоких скоростях – и от индуктивности. Эти драйверы крайне неэффективны, и могут быть использованы только на очень малых скоростях.

    2) Двухуровневые драйверы

    В драйверах этого типа ток в обмотке сперва поднимается до нужного уровня с помощью высокого напряжения, затем источник высокого напряжения отключается, и нужная сила тока поддерживается источником малого напряжения. Такие драйверы достаточно эффективны, помимо прочего они снижают нагрев двигателей, и их все еще можно иногда встретить в высококлассном оборудовании. Однако, такие драйверы поддерживают только режим шага и полушага.

    3) Драйверы с ШИМ.

    На текущий момент ШИМ-драйверы шаговых двигателей наиболее популярны, практически все драйверы на рынке – этого типа. Эти драйверы подают на обмотку шагового мотора ШИМ-сигнал очень высокого напряжения, которое отсекается по достижению током необходимого уровня. Величина силы тока, по которой происходит отсечка, задается либо потенциометром, либо DIP-переключателем, иногда эта величина программируется с помощью специального ПО. Эти драйверы достаточно интеллектуальны, и снабжены множеством дополнительных функций, поддерживают разные деления шага, что позволяет увеличить дискретность позиционирования и плавность хода. Однако, ШИМ-драйверы также весьма сильно отличаются друг от друга. Помимо таких характеристик, как питающее напряжение и максимальный ток обмотки, у них отличается частота ШИМ. Лучше, если частота драйвера будет более 20 кГц, и вообще, чем она больше – тем лучше. Частота ниже 20 кГц ухудшает ходовые характеристики двигателей и попадает в слышимый диапазон, шаговые моторы начинают издавать неприятный писк. Драйверы шаговых двигателей вслед за самими двигателями делятся на униполярные и биполярные. Начинающим станкостроителям настоятельно рекомендуем не экспериментировать с приводами, а выбрать те, по которым можно получить максимальный объем технической поддержки, информации и для которых продукты на рынке представлены наиболее широко. Такими являются драйверы биполярных гибридных шаговых двигателей.

    Как выбрать драйвер шагового двигателя (ШД)

    Первый параметр , на который стоит обратить внимание, когда вы решили выбрать драйвер шагового двигателя – это сила тока, которую может обеспечить драйвер. Как правило, она регулируется в достаточно широких пределах, но стоит драйвер нужно выбирать такой, который может выдавать ток, равный току фазы выбранного шагового двигателя. Желательно, конечно, чтобы максимальная сила тока драйвера была еще на 15-40% больше. С одной стороны, это даст запас на случай, если вы захотите получить больший момент от мотора, или в будущем поставите более мощный двигатель, с другой – не будет излишней: производители иногда «подгоняют» номиналы радиоэлектронных компонентов к тому или иному виду/размеру двигателей, поэтому слишком мощный драйвер на 8 А, управляющий двигателем NEMA 17 (42 мм), может, к примеру, вызывать излишние вибрации.

    Второй момент – это напряжение питания. Весьма важный и неоднозначный параметр. Его влияние достаточно многогранно – напряжение питания влияет на динамику(момент на высоких оборотах), вибрации, нагрев двигателя и драйвера. Обычно максимальное напряжение питания драйвера примерно равно максимальному току I, умноженному на 8-10. Если максимальное указанное напряжение питания драйвера резко отличается от данных величин – стоит дополнительно поинтересоваться, в чем причина такой разницы. Чем больше индуктивность двигателя - тем большее напряжение требуется для драйвера. Существует эмпирическая формула U = 32 * sqrt(L), где L - индуктивность обмотки шагового двигателя. Величина U, получаемая по этой формуле, весьма приблизительная, но она позволяет ориентироваться при выборе драйвера: U должно примерно равняться максимальному значению напряжения питания драйвера. Если вы получили U равным 70, то по данному критерию проходят драйверы EM706, AM882, YKC2608M-H.

    Третий аспект – наличие опторазвязанных входов. Практически во всех драйверах и контроллерах, выпускаемых на заводах, тем более брендовых, опторазвязка стоит обязательно, ведь драйвер – устройство силовой электроники, и пробой ключа может привести к мощному импульсу на кабелях, по которым подаются управляющие сигналы, и выгоранию дорогостоящего ЧПУ-контроллера. Однако, если вы решили выбрать драйвер ШД незнакомой модели, стоит дополнительно поинтересоваться наличием оптоизоляции входов и выходов.

    Четвертый аспект – наличие механизмов подавления резонанса. Резонанс шагового двигателя – явление, которое проявляется всегда, разница только в резонансной частоте, которая прежде всего зависит от момента инерции нагрузки, напряжения питания драйвера и установленной силы тока фазы мотора. При возникновении резонанса шаговый двигатель начинает вибрировать и терять крутящий момент, вплоть до полной остановки вала. Для подавления резонанса используется микрошаг и – встроенные алгоритмы компенсации резонанса. Колеблющийся в резонансе ротор шагового двигателя порождает микроколебания ЭДС индукции в обмотках, и по их характеру и амплитуде драйвер определяет, есть ли резонанс и насколько он силен. В зависимости от полученных данных драйвер несколько смещает шаги двигателя во времени относительно друг друга – такая искусственная неравномерность нивелирует резонанс. Механизм подавления резонанса встроен во все >драйверы Leadshine серий DM, AM и EM. Драйверы с подавлением резонанса – высококачественные драйверы, и если бюджет позволяет – лучше брать именно такие. Впрочем, и без этого механизма драйвер остается вполне рабочим устройством – основная масса проданных драйверов – без компенсации резонанса, и тем не менее десятки тысяч станков без проблем работают по всему миру и успешно выполняют свои задачи.

    Пятый аспект – протокольная часть. Надо убедиться, что драйвер работает по нужному вам протоколу, а уровни входных сигналов совместимы с требуемыми Вам логическими уровнями. Эта проверка идет пятым пунктом, потому что за редким исключением подавляющее число драйверов работает по протоколу STEP/DIR/ENABLE и совместимо с уровнем сигналов 0..5 В, вам надо только лишь на всякий случай убедиться.

    Шестой аспект – наличие защитных функций. Среди них защита от превышения питающего напряжения, тока обмоток(в т.ч. от короткого замыкания обмоток), от переполюсовки питающего напряжения, от неправильного подключения фаз шагового мотора. Чем больше таких функций - тем лучше.

    Седьмой аспект – наличие микрошаговых режимов. Сейчас практически в каждом драйвере есть множество микрошаговых режимов. Однако, из каждого правила есть исключения, и в драйверах Geckodrive режим только один – деления шага 1/10. Мотивируется это тем, что большее деление не приносит большей точности, а значит, в нем нет необходимости. Однако, практика показывает, что микрошаг полезен вовсе не повышением дискретности позиционирования или точности, а тем, что чем больше деление шага, тем плавней движение вала мотора и меньше резонанс. Соответственно, при прочих равных условиях стоит использовать деление чем больше, тем лучше. Максимально допустимое деление шага будет определяться не только встроенными в драйвер таблицами Брадиса, но и максимальной частотой входных сигналов – так, для драйвера со входной частотой 100 кГц нет смысла использовать деление 1/256, так как скорость вращения будет ограничена 100 000 / (200 * 256) * 60 = 117 об/мин, что для шагового двигателя очень мало. Кроме того, персональный компьютер тоже с трудом сможет генерировать сигналы с частотой более 100 кГц. Если вы не планируете использовать аппаратный ЧПУ контроллер, то 100 кГц скорее всего будет Вашим потолком, что соответствует делению 1/32.

    Восьмой аспект – наличие дополнительных функций. Их может быть множество, например, функция определения «срыва» - внезапной остановки вала при заклинивании или нехватки крутящего момента у шагового двигателя, выходы для внешней индикации ошибок и т.п. Все они не являются необходимыми, но могут сильно облегчить жизнь при построении станка.

    Девятый, и самый важный аспект – качество драйвера. Оно практически не связано с характеристиками и т.п. На рынке существует множество предложений, и иногда характеристики драйверов двух производителей совпадают практически до запятой, а установив их по очереди на станок, становится ясно, что один из производителей явно занимается не своим делом, и в производстве недорогих утюгов ему больше повезет. Определить уровень драйвера заранее по каким-то косвенным данным новичку достаточно трудно. Можно попробовать ориентироваться на количество интеллектуальных функций, таких как «stall detect» или подавление резонанса, а также воспользоваться проверенным способом - ориентироваться на бренды.

  • Последние материалы раздела:

    Смотреть что такое
    Смотреть что такое "душевный мир" в других словарях

    Энциклопедический словарь 1. МИР, а; мн. миры, ов; м. 1. Совокупность всех форм материи в земном и космическом пространстве; Вселенная....

    Наталья СтепановаМолитвенный щит
    Наталья СтепановаМолитвенный щит

    Все дело в том, дорогие мои, что Господь Бог наделил меня искренней любовью к людям. Этому меня учила и моя бабушка. Если говорить совсем кратко,...

    Сонник: к чему снится Лошадь
    Сонник: к чему снится Лошадь

    Во сне дано не каждому, ведь это сильное, свободолюбивое животное может запросто скинуть своего наездника. Сон, в котором сновидец скачет на...