Каким должно быть топливо будущего. Все, что нужно знать о водородном топливе будущего Почему водород называют топливом будущего

По всему миру катаются около пятидесяти миллионов авто, которые ездят на бензине или дизельном топливе. Нефть не безгранична и значит возникает вопрос — на чем будут ездить автомобили через 30-40 лет?

Какое топливо доступно

Начнем с гибридных автомобилей. Они сочетают небольшой двигатель внутреннего сгорания (ДВС) и электропривод с аккумуляторными батареями. Энергия от двигателя и от тормозной системы автомобиля используется для зарядки аккумуляторов, питающих электропривод. Типичные гибридные двигатели позволяют на 20−30% эффективнее использовать топливо по сравнению с традиционными ДВС и выбрасывают в атмосферу значительно меньше вредных веществ.

Как мы знаем, без бензина гибриды далеко не уедут , так что этот вариант убираем. Электромобили пока кажется оптимальным вариантом, но нормальных машин на электрической тяге мало. И запас хода у них маловат, особенно если путешествуете на дальние расстояния. Стоимость также велика. Этот вариант на будущее, а искать альтернативное топливо нужно сейчас.

Дальше по списку идут автомобили на альтернативном топливе , по типу спиртового топлива, биодизеля или этанола. Этот вариант, на первый взгляд, кажется отличным, к тому же создаются автомобили на альтернативном топливе и они отлично себя показали. Но если все машины «пересадить» на биотопливо, то подорожают продукты питания, т.к. для производства этого вида топлива нужны большие посевочные площади.

Другое дело — водород для заправки автомобилей. Он перспективнее по нескольким причинам: масса водородной батареи меньше, перезаправка быстрее, производство аккумуляторов дороже и требует больше разных экзотических элементов, сеть заправочных станций организовать гораздо проще чем зарядные, есть и другие плюсы…

Электричество — топливо будущего?

Авто компании уже вкладывают огромные деньги на разработку альтернативного топлива, создаются электромобили с большим запасом хода. Если в начале они имели запас хода не более 100 километров, то сейчас некоторые могут похвастаться запасом без подзарядки до 300-400 километров пробега. Если даже будут развиваться технологии и появятся новые типы аккумуляторных батарей для электромобилей, то запас можно увеличить до 500 км.

Применяемость электромобилей с большим запасом хода на этом не ограничивается. Нужно строить заправки по всему миру, их должно быть большое количество. Причем заправки должны быть быстрые , когда машина может «запитаться» электричеством по времени не более 1 часа (в идеале 10-20 минут). Сейчас на полную подзарядку уходит до 16-24 часов в зависимости от емкости батарей.

Как понимаете, нужно полностью менять дорожную сеть, и на это могут пойти крупные нефтяные компании. Они обладают большим количеством авто заправок. Нужно всего лишь рядом поставить колонки для заправки электромобилей. Тогда количество машин на электрической тяге возрастет, ведь проблема дозаправки будет решена.

Исходя из сказанного: для электромобилей пока нет нормальных батарей которые были бы всепогодны и принимали бы заряд хотя бы за минуты. К тому же электромобили дороги для большинства автолюбителей. Но со временем и развитием технологий, их стоимость снизится, они станут доступны для каждого.

Современное автомобилестроение развивается с акцентом на производство более экологичных транспортных средств. Это обусловлено развернувшейся во всём мире борьбой за чистоту атмосферного воздуха путём снижения выбросов углекислого газа. Постоянный рост цен на бензин также заставляет производителей искать другие источники энергии. Многие ведущие автостроительные концерны постепенно переходят к серийному производству машин, работающих на альтернативном топливе, что уже в самом ближайшем будущем приведёт к появлению на автодорогах мира достаточного количества не только электрокаров, но также авто с двигателями, работающими от водородного топлива.

Принцип работы водородных автомобилей

Авто, работающее на водороде, призвано снизить атмосферные выбросы углекислого газа, а также других вредных примесей. Использование водорода для приведения в движение колёсного транспортного средства, возможно двумя различными способами:

В то время, как мы привыкли заполнять бензином или дизельным топливом свой автомобиль, новое чудо – работает на наиболее распространенном элементе во вселенной - водороде

ВДВС представляет собой аналог широко используемых сегодня двигателей, топливом для которых является пропан. Именно эту модель движка проще всего перенастроить для работы от водорода. Принцип его действия тот же, что у бензинового двигателя, только в камеру сгорания вместо бензина поступает сжиженный водород. Авто с ВЭ – это, фактически, электрокар. Водород здесь выступает лишь сырьём для выработки электроэнергии, необходимой, чтобы привести в действие электрический мотор.

Водородный элемент состоит из следующих частей:

  • корпуса;
  • мембраны, пропускающей только протоны – она делит ёмкость на две части: анодную и катодную;
  • анода, покрытого катализатором (палладием или платиной);
  • катода с тем же катализатором.

Принцип действия ВЭ построен на физико-химической реакции, состоящей в следующем:


Таким образом, при движении автомобиля не выделяется углекислый газ, а лишь водяной пар, электричество и окись азота.

Основные характеристики водородных автомобилей

Главные игроки автомобилестроительного рынка уже имеют опытные образцы своей продукции, использующие водород в качестве топлива. Можно уже определённо выделить отдельные технические характеристики таких машин:

  • максимально развиваемую скорость до 140 км/час;
  • средний пробег от одной заправки 300 км (некоторые производители, например, Тойота или Хонда заявляют вдвое большую цифру – 650 или 700 км, соответственно, на одном лишь водороде);
  • время разгона до 100 км/час с нуля – 9 секунд;
  • мощность силовой установки до 153 лошадиных сил.

Этот автомобиль может разогнаться до 179 км/ч, причем до 100 км/ч машина разгоняется за 9.6 секунд и, самое главное, она способна проехать без дополнительной дозаправки 482 км

Совсем неплохие параметры даже для бензиновых двигателей. Пока ещё не наметился крен в сторону ВДВС, использующего сжиженный Н2 или машин на ВЭ, и непонятно, какой из этих типов двигателей достигнет лучших технических характеристик и экономических показателей. Но сегодня больше выпущено моделей машин с электроприводом, работающих от ВЭ, которые дают больший КПД. Хотя расход водорода для получения 1 кВт энергии меньше в ВДВС.

К тому же переоснащение ДВС под водород для увеличения КПД требует изменения системы зажигания установки. Не решена пока проблема быстрого прогорания поршней и клапанов из-за более высокой температуры горения водорода. Здесь всё решит дальнейшее развитие обеих технологий, а также динамика цен при переходе к серийному производству.

Плюсы и минусы авто, работающих на водороде

Среди основных преимуществ водородомобилей можно отметить:

  • высокую экологичность, заключающуюся в отсутствии большинства вредных веществ в выхлопах, характерных для работы бензинового двигателя, – углекислого и угарного газа, окиси и диоксидов серы, альдегидов, ароматических углеводородов;
  • более высокий КПД, по сравнению с бензиновыми авто;

В целом авто имеет амбиции покорить весь мир
  • меньший уровень шума от работы двигателя;
  • отсутствие сложных, ненадёжных систем топливоподачи и охлаждения;
  • возможность использования двух видов топлива.

Кроме того, машины, работающие на ВДВС, имеют меньший вес и больше полезного объёма, несмотря на необходимость установки баллонов для топлива.

К недостаткам водородомобилей можно отнести:

  • громоздкость силовой установки при использовании топливных элементов, снижающей маневренность автомобиля;
  • высокую стоимость самих водородных элементов из-за входящих в их состав палладия или платины;
  • несовершенство конструкции и неопределённость в материале изготовления баков для водородного топлива;
  • отсутствие технологии хранения водорода;
  • отсутствие заправок водородом, инфраструктура которых очень слабо развита во всём мире.

Однако, с переходом к массовому выпуску авто, оснащённых водородными силовыми установками, большая часть этих недостатков наверняка будет устранена.

Какие автомобили, использующие водород, уже выпускаются

Производством машин на водородном топливе занимаются такие ведущие мировые автомобилестроительные компании, как BMW, Mazda, Mercedes, Honda, MAN и Toyota, Daimler AG и General Motors. Среди опытных моделей, а у некоторых производителей уже и мелкосерийных, имеются автомобили, функционирующие только на водороде, или с возможностью использования двух видов топлива, так называемые гибриды.

Уже выпускаются такие модели водородомобилей, как:

  • Ford Focus FCV;
  • Mazda RX-8 hydrogen;
  • Mercedes-Benz A-Class;
  • Honda FCX;
  • Toyota Mirai;
  • Автобусы MAN Lion City Bus и Ford E-450;
  • гибридный автомобиль на два вида топлива BMW Hydrogen 7.

Сегодня можно сказать определённо, что, несмотря на имеющиеся трудности (новое всегда с трудом пробивает себе дорогу), будущее принадлежит более экологичным автомобилям. Автокары, работающие на водородном топливе, составят достойную конкуренцию электромобилям.

Достоинства: Главным и неоспоримым преимуществом автомобилей на водородном топливе является высокая их экологичность. Так и запишем:
Экологичность водородного топлива. Продуктом горения водорода является вода, точнее водяной пар. Это, естественно, не означает, что при езде на таком автотранспорте не будет выделяться токсичных газов, ведь в ДВС помимо водорода сгорают ещё и различные масла. Однако количество выбросов их несравнимо с чадящими бензиновыми коллегами. Собственно, ухудшающееся состояние экологии – это проблема человечества, и если количество бензиновых «монстров» будет расти такими темпами, то водородное топливо, как когда-то, в войну, станет единственным спасением теперь уже не города, а всего человечества.
ДВС на водороде может использовать и классические виды топлива, такие как бензин. Для этого придётся устанавливать на автомобиль дополнительный топливный бак. Такой гибрид гораздо легче «продвинуть» на рынок, чем чистый водородный ДВС.
Бесшумность.
Простота конструкции и отсутствие дорогостоящих, ненадёжных и опасных систем топливоподачи, охлаждения и т.д.
Коэффициент полезного действия электродвигателя работающего на водородном топливе в несколько раз выше, чем у классического двигателя внутреннего сгорания.

Недостатки: Большой вес автомобиля. Для работы электродвигателя на водородном топливе необходимы мощные аккумуляторные батареи и водородные преобразователи тока, которые в общей конструкции весят не мало, да и габариты у них внушительные.

Дороговизна водородных топливных элементов.

При использовании водорода с традиционным топливом велика опасность взрыва и возгорания.
Несовершенные технологии хранения водородного топлива. То есть, ученые и разработчики до сих пор не решат, какой сплав использовать для баков хранения водорода.
Не разработаны необходимые стандарты хранения, транспортировки, применения водородного топлива.
Полное отсутствие водородной инфраструктуры заправок автомобилей.
Сложный и дорогой способ получений водорода в промышленных масштабах.
Прочитав о достоинствах и недостатках водородного топлива можно сделать вывод, что в свете ухудшающийся экологии, альтернативный источник энергии водород станет единственным продуктивным решением проблемы. Но, если обратится к недостаткам, то становится ясным, почему, до сих пор, серийный выпуск водородных автомобилей откладывается на неопределённый срок.



Методы получения H2:

1) Паровая конверсия метана – ПКМ. Осуществляется в мире в основном путём паровой конверсии метана при температурах 750-850 °С в химических паровых реформерах и каталитических поверхностях. На первом этапе метан и водяной пар превращаются в водород и монооксид углерода (синтез-газ). Вслед за этим «реакция сдвига» превращает монооксид углерода и воду в диоксид угле­рода и водород. Эта реакция происходит при температурах 200-250 °С. Для осуществления эндотермического процесса ПКМ сжигается около поло­вины исходного газа. При использовании паровой конверсии метана в со­четании с высокотемпературным гелиевым реактором (ВТГР) требуемая тепловая мощность ВТГР составляет в расчёте на 5 млн т водорода около 6,5 ГВт.

2) Плазменная конверсия углеводородов. . В РКЦ «Курчатовский инсти­тут» выполнены исследования плазменной конверсии природного углево­дородного топлива (метан, керосин) в синтез-газ. Эта технология может быть применена на заправочных станциях или на борту водородных авто­мобилей при использовании обычного жидкого топлива. Разработаны так­же плазмохимические методы получения водорода с помощью ВЧ- и СВЧ-технологий с использованием в качестве сырья химических соединений, в Которых водород находится в слабосвязанном состоянии, например, серо­водорода.

3) Электролитическое разложение воды (электролиз). Электролитиче­ский водород является наиболее доступным, но дорогим продуктом. Для разложения чистой воды при нормальных условиях требуется напряжение 1,24 вольта. Величина напряжения зависит от температуры и давления, от свойств электролита и других параметров электролизера. В промышлен­ных и опытно-промышленных установках реализован к.п.д. электролизера ~70-80 %, в том числе для электролиза под давлением. Паровой электро­лиз - это разновидность обычного электролиза. Часть энергии, необходи­мой для расщепления воды, в этом случае вкладывается в виде высокотем­пературного тепла в нагрев пара (до 900 °С), делая процесс более эффек­тивным. Стыковка ВТГР с высокотемпературными электролизерами по­зволит повысить суммарный кпд производства водорода из воды до 50 %.

Одним из существенных ограничений крупномасштабного электро­лизного производства водорода является потребность в драгоценных ме­таллах (платина, родий, палладий) для катализаторов, которая пропорцио­нальна мощности и, следовательно, поверхности электродов.

4) Расщепление воды. По-видимому, в ближайшем будущем методы по­лучения водорода с использованием углеродного сырья будут основными. Однако сырьевые и экологические ограничения процесса паровой конверсии метана стимулируют разработку процессов производства водорода из воды.

5) Термохимические и термоэлек­трохимические циклы. Воду можно термиче­ски разложить и при более низкой температуре, используя последователь­ность химических реакций, которые выполняют следующие функции: свя­зывание воды, отщепление водорода и кислорода, регенерация реагентов. термохимический процесс получения водорода с кпд до 50 % исполь­зует последовательность химических реакций (например, серно-кислотно-йодный процесс) и требует подвода тепла при температуре около 1000 °С. Источником тепла при термохимическом разложении воды также может служить высокотемпературный реактор. На отдельных стадиях процессов такого типа наряду с термическим воздействием для отщепления водорода может использоваться электричество (электролиз, плазма).

На данный момент водород является самым разрабатываемым "топливом будущего". На это есть несколько причин: при окислении водорода образуется как побочный продукт вода, из нее же можно водород добывать. А если учесть, что 73% поверхности Земли покрыты водой, то можно считать, что водород неисчерпаемое топливо. Так же возможно использование водорода для осуществления термоядерного синтеза, который вот уже несколько миллиардов лет происходит на нашем Солнце и обеспечивает нас солнечной энергией.

Управляемый термоядерный синтез

Управляемый термоядерный синтез использует ядерную энергию, выделяющуюся при слиянии легких ядер, таких как ядра водорода или его изотопов дейтерия и трития. Ядерные реакции синтеза широко распространены в природе, будучи источником энергии звезд. Ближайшая к нам звезда - Солнце - это естественный термоядерный реактор, который уже многие миллиарды лет снабжает энергией жизнь на Земле. Ядерный синтез уже освоен человеком в земных условиях, но пока не для производства мирной энергии, а для производства оружия он используется в водородных бомбах. Начиная с 50 годов, в нашей стране и параллельно во многих других странах проводятся исследования по созданию управляемого термоядерного реактора. С самого начала стало ясно, что управляемый термоядерный синтез не имеет военного применения. В 1956 году исследования были рассекречены и с тех пор проводятся в рамках широкого международного сотрудничества. В то время казалось, что цель близка, и что первые крупные экспериментальные установки, построенные в конце 50 годов, получат термоядерную плазму. Однако потребовалось более 40 лет исследований для того, чтобы создать условия, при которых выделение термоядерной мощности сравнимо с мощностью нагрева реагирующей смеси. В 1997 году самая крупная термоядерная установка - Европейский Токамак, JET, получила 16 МВт термоядерной мощности и вплотную подошла к этому порогу.

Электроводородный генератор

В результате проведенных работ изобретено и патентуется по системе РСТ простое высокопроизводительное устройство для разложения воды и производства из нее беспрецедентно дешевого водорода методом гравитационного электролиза раствора электролита, получившее название "электроводородный генератор (ЭВГ)". Он приводится в действие механическим приводом и работает при обычной температуре в режиме теплового насоса, поглощая через свой теплообменник необходимое при этом тепло из окружающей среды или утилизируя теплопотери промышленных или транспортных энергоустановок. В процессе разложения воды подведенная к приводу ЭВГ избыточная механическая энергия может быть на 80 % преобразована в электроэнергию, которая затем используется любым потребителем на нужды полезной внешней нагрузки. При этом на каждую единицу затраченный мощности привода генератором в зависимости от заданного режима работы поглощается от 20 до 88 энергетических единиц низкопотенциального тепла, что собственно и компенсирует отрицательный термический эффект химической реакции разложения воды. Один кубический метр условного рабочего объема генератора, работающего в оптимальном режиме с КПД 86-98 %, способен за секунду произвести 3,5 м3 водорода и одновременно около 2,2 МДж постоянного электрического тока. Единичная тепловая мощность ЭВГ в зависимости от решаемой технической задачи может варьироваться от нескольких десятков ватт до 1000 МВт.

"Водородный" автомобиль

Французский автомобильный концерн Renault совместно с компанией Nuvera Fuel Cells планирует разработать серийный автомобиль, использующий в качестве топлива водород, уже к 2010 году (рис.6)

Рис. 6

Nuvera - небольшая американская компания, с 1991 года занимающаяся разработкой двигателей, альтернативных доминирующим сейчас бензиновым и дизельным. В основе разработок Nuvera лежит так называемый "топливный элемент" (Fuel Cell). Топливный элемент - устройство, не имеющее движущихся частей, в котором происходит химическая реакция водорода и кислорода, в результате которой вырабатывается электричество. Побочными продуктами реакции является выделяемое тепло и некоторое количество воды.

Принцип "топливного элемента" в корне отличается от обычного процесса электролиза, применяемого сейчас в батареях и аккумуляторах. Разработчики утверждают, что их продукция - это по сути дела "вечная батарейка", имеющая весьма значительный срок службы. Кроме того, в отличие от обычной батареи, "топливный элемент" не нуждается в подзарядке.

"Водородные батарейки"

Группа инженеров из технологического института штата Массачусетс (Massachusetts Institute of Technology) совместно со специалистами других университетов и компаний разрабатывает миниатюрный топливный двигатель, который в будущем сможет заменить батареи и аккумуляторы.

Журнал Popular Science, опубликовавший статью об исследованиях американских учёных, не удержался от восторга: "Вы только представьте себе жизнь без батареи! Когда топливо заканчивается в вашем ноутбуке, вы "заливаете полный бак" - и вперёд!"

История водородного двигателя. Если нефть называют топливом сегодняшнего дня (топливом века), то водород можно назвать топливом будущего .

При нормальных условиях водород - это газ без цвета, запаха и вкуса, самое легкое вещество (в 14,4 раза легче воздуха); отличается очень низкими температурами кипения и плавления, соответственно, -252,6 и -259,1 СС.

Жидкий водород - бесцветная жидкость, без запаха, при -253 °С имеет массу 0,0708 г/см 3 .

Своим названием водород обязан французскому ученому Антуану Лорану Лавуазье, который в 1787 г., разлагая и вновь синтезируя воду, предложил назвать второе составляющее (кислород был известен) - гидрофеном, что в переводе означает «рождающий воду», или «водород». До этого выделяющийся при взаимодействии кислот с металлами газ назывался «горючим воздухом».

Первый патент на двигатель, работающий на смеси водорода с кислородом, появился в 1841 г. в Англии, а спустя 11 лет придворный часовщик Христиан Тейман построил в Мюнхене двигатель, который проработал на смеси водорода с воздухом в течение нескольких лет.


Одной из причин того, что эти двигатели не получили распространения, послужило отсутствие в природе свободного водорода.

Вновь к водородному двигателю обратились уже в нашем веке - в 70-е годы в Англии учеными Рикардо и Брусталлом были проведены серьезные исследования. Экспериментально - путем изменения только подачи водорода - они установили, что двигатель на водороде может работать во всем диапазоне нагрузок, от холостого хода до полной нагрузки. Причем на бедных смесях были получены более высокие значения индикаторного КПД, чем на бензине.

В Германии в 1928 г. дирижаблестроительная фирма «Цеппелин» использовала водород в качестве обогатителя топлива, чтобы осуществить дальний испытательный перелет через Средиземное море.

Перед второй мировой войной в той же Германии применялись автодрезины, работавшие на водороде. Водород для них получали в электролизерах высокого давления, работавших от электросети на заправочных станциях, расположенных близ железной дороги.

Большую роль в совершенствовании водородного двигателя сыграли работы Рудольфа Эррена. Он впервые применил внутреннее смесеобразование, что позволило осуществить конвертирование жидкотопливных двигателей на водород при сохранении основной топливной системы и тем самым обеспечить работу двигателя на углеводородном топливе, водороде и жидком топливе с присадкой водорода. Интересно отметить, что переходить с одного вида топлива на другой можно было без остановки двигателя.


Одним из двигателей, конвертированных Эрреном, является дизель автобуса «Лейланд», опытная эксплуатация которого выявила высокую экономичность при добавке водорода к дизельному топливу.

Эррен разработал также водородокислородный двигатель, продуктом сгорания которого был водяной пар Некоторая часть пара возвращалась в цилиндр вместе с кислородом а ос тальная конденсировалась. Возможность работы такого двигателя без наружного выхлопа была использована на германских подводных лодках довоенной постройки. В надводном положении дизели обеспечивали ход лодки и давали энергию для разложения воды на водород и кислород, в подводном положении - работали на парокислородной смеси и водороде. При этом подводная лодка не нуждалась в воздухе для дизелей и не оставляла на поверхности воды следов в виде пузырьков азота, кислорода и других продуктов сгорания.

В нашей стране исследование возможностей использовать водород в двигателях внутреннего сгорания началось в 30-е годы.

В период блокады Ленинграда для подъема и спуска аэростатов воздушного заграждения использовались автомобили-лебедки с двигателями «ГАЗ-АА», которые были переведены на водородное питание. С 1942 г. водород успешно использовался в московской службе ПВО, им надували аэростаты.

В 50-е годы на речных судах предполагалось использовать водород, получаемый разложением воды током гидроэлектростанций.

Использование водорода в настоящее время

В 70-е годы под руководством академика В. В. Струминского были проведены испытания автомобильного двигателя «ГАЗ-652», работавшего на бензине и водороде, и двигателя «ГАЗ-24», работавшего на жидком водороде. Испытания показали, что при работе на водороде повышается КПД и уменьшается нагрев двигателя.

В Харьковском институте проблем машиностроения АН УССР и Харьковском автодорожном институте под руководством профессора И. Л. Варшавского были проведены исследования детонационной стойкости водородовоздушных и бензоводородовоздушных смесей, а также выполнены разработки по конвертированию на водород и добавке водорода к бензину двигателей автомобилей «Москвич-412», «ВАЗ-2101», «ГАЗ-24» с использованием для получения и хранения водорода энергоаккумулирующих веществ и гидридов тяжелых металлов. Эти разработки достигли стадии опытной эксплуатации на автобусах и такси.

В космонавтике появился новый класс летательных аппаратов, имеющих в земной атмосфере гиперзвуковые скорости. Для достижения таких скоростей необходимо топливо с высокой теплотворной способностью и низким молекулярным весом продуктов сгорания; кроме того, оно должно обладать большим хладоресурсом.

Этим требованиям как нельзя лучше отвечает водород. Он способен поглощать тепло в 30 раз больше, чем керосин. При нагревании от -253 по +900 °С (температура на входе в двигатель) 1 кг водорода может поглотить более 4000 ккал.

Омывая изнутри обшивку летательного аппарата перед поступлением, в камеру сгорания, жидкий водород поглощает все тепло, выделяющееся при разгоне аппарата до скорости, в 10-12 раз превосходящей скорость звука в воздухе.

Жидкий водород в паре с жидким кислородом был применен в последних ступенях сверхтяжелых американских ракет - носителей «Сатурн-5», что в определенной степени способствовало успеху космических программ «Аполлон» и «Скайлэб».

Моторные свойства топлива

Основные физико-химические и моторные свойства водорода в сравнении с пропаном и бензином приведены в табл. 1.


Водород обладает наиболее высокими энергомассовыми показателями, превосходящими традиционные углеводородные топлива в 2,5-3 раза, а спирты - в 5-6 раз. Однако из-за низкой плотности по объемной тепло-производительности он уступает большинству жидких и газообразных топлив. Теплота сгорания 1 м 3 водородовоздушной смеси на 15% меньше, чем у бензина. Вследствие худшего наполнения цилиндра из-за низкой плотности литровая мощность бензиновых двигателей при переводе на водород снижается на 20-25%.

Температура воспламенения водородных смесей выше, чем углеводородных, но для воспламенения первых требуется меньшее количество энергии. Водородовоздушные смеси отличаются высокой скоростью сгорания в двигателе, причем сгорание протекает практически при постоянном объеме, что ведет к резкому возрастанию давления (в 3 раза выше по сравнению с бензиновым эквивалентом). Однако на бедных и даже очень бедных смесях скорость горения водорода обеспечивает нормальную работу двигателя.

Водородовоздушные смеси обладают исключительно широким диапазоном горючести, что позволяет при любых изменениях нагрузки применять качественное регулирование. Низкий предел воспламенения обеспечивает работу водородного двигателя на всех скоростных режимах в широком диапазоне состава смеси, вследствие чего его КПД на частичных нагрузках увеличивается на 25-50%.

Для подачи водорода в двигатели внутреннего сгорания известны следующие способы: впрыск во впускной трубопровод; при помощи модификации карбюратора, аналогичной системам питания сжиженным и природным газами; индивидуальное дозирование водорода около впускного клапана; непосредственный впрыск под высоким давлением в камеру сгорания.

Для обеспечения устойчивой работы двигателя первый и второй способы могут применяться только при частичной рециркуляции отработавших газов, при помощи присадки к топливному заряду воды и добавки бензина.

Наилучшие результаты дает непосредственный впрыск водорода в камеру сгорания, при котором полностью исключаются обратные вспышки во впускном тракте, максимальная же мощность не только не уменьшается, но может быть повышена на 10-15%.

Запас топлива

Объемно-массовые характеристики различных систем хранения водорода приведены в табл. 2. Все они по габаритам и массе уступают бензину.


Из-за малого энергозапаса и значительного увеличения размеров и массы топливного бака газообразный водород не применяется. Не применяются на транспортных средствах и тяжелые баллоны высокого давления.

Жидкого водорода в криогенных емкостях, имеющих двойные стенки, пространство между которыми теплоизолировано.

Большой практический интерес представляет аккумулирование водорода при помощи металлогидридов. Некоторые металлы и сплавы, например ванадий, ниобий, железотитановый сплав (FeTi), марганцевоникелевый (Mg + 5% Ni) и другие, при определенных условиях могут соединяться с водородом. При этом образуются гидриды, содержащие большое количество водорода. Если к гидриду подводить тепло, он будет разлагаться, освобождая водорот. Восстановленные металлы и сплавы можно многократно использовать для соединения с водородом.

В гидридных системах для выделения водорода обычно используется тепло отработавших газов двигателя. Зарядка гидридного аккумулятора водородом производится под небольшим давлением с одновременным охлаждением проточной водой из водопровода. По термодинамическим свойствам и низкой стоимости наиболее подходящим компонентом является сплав FeTi.

Гидридный аккумулятор представляет собой пакет трубок (гидридных патронов) из нержавеющей стали, заполненных порошкообразным сплавом FeTi и заключенных в общую оболочку. В пространство между трубками пропускаются отработавшие газы двигателя или вода. Трубки с одной стороны объединены коллектором, который служит для хранения небольшого запаса водорода, необходимого для запуска двигателя и его работы на переходных режимах. По массе и объему гидридные аккумуляторы соизмеримы с системами хранения жидкого водорода. По энергоемкости они уступают бензину, но превосходят свинцовые электроаккумуляторы.

Гидридный способ хранения хорошо согласуется с режимами работы двигателя посредством автоматического регулирования расхода отработавших газов через гидридный аккумулятор. Гидридная система позволяет наиболее полно утилизовать тепловые потери с отработавшими газами и охлаждающей водой. На автомобиле «Шевроле Монте-Карло» применена опытная гидридно-криогенная система. В этой системе запуск двигателя производится на жидком водороде, а гидридный аккумулятор включается после прогрева двигателя, причем для подогрева гидрида используется вода из системы охлаждения.

В довоенной Германии в опытной гидридной системе, разработанной фирмой «Даймлер-Бенц», были применены два гидридных аккумулятора, один из которых - низкотемпературный - поглощает тепло из окружающей среды и работает как кондиционер, другой - нагревается охлаждающей жидкостью из системы охлаждения двигателя. Время, необходимое для зарядки гидридного аккумулятора, зависит от количества времени, необходимого для отвода тепла. При охлаждении водопроводной водой время полной заправки гидридного аккумулятора емкостью 65 л, содержащего 200 кг сплава FeTi и поглощающего 50 м3 водорода, составляет 45 мин, причем за первые 10 мин происходит 75%-ная заправка.

Преимущества водорода

Главными преимуществами водорода как топлива в настоящее время являются неограниченные запасы сырья и отсутствие или малое количество вредных веществ в отработавших газах.

Сырьевая база для получения водорода практически неограничена. Достаточно сказать, что во вселенной это самый распространенный элемент. В виде плазмы он составляет почти половину массы Солнца и большинства звезд. Газы межзвездной среды и газовые туманности также в основном состоят из водорода.

В земной коре содержание водорода составляет 1% по массе, а в воде - самом распространенном на Земле веществе - 11,19% по массе. Однако свободный водород встречается крайне редко и в минимальных количествах в вулканических и других природных газах.

Водород является уникальным топливом, которое добывается из воды и после сгорания вновь образует воду. Если в качестве окислителя применять кислород, то единственным продуктом сгорания будет дистиллированная вода. При использовании воздуха к воде добавляются окислы азота содержание которых зависит от коэффициента избытка воздуха.

При использовании водорода не требуются ядовитые свинцовые антидетонаторы.

Несмотря на отсутствие в водородном топливе углерода, в отработавших газах из-за выгорания углеводородных смазок, попадающих в камеру сгорания, может содержаться незначительное количество окиси углерода и углеводородов.

Фирмой «Дженерал Моторс» (США) в 1972 г. были проведены соревнования автомобилей на наиболее чистый выхлоп. В соревнованиях приняли участие аккумуляторные электромобили и 63 автомобиля, работавших на различных топливах, в том числе на газе - аммиаке, пропане. Первое место было присуждено конвертированному на водород автомобилю «Фольксваген », отработавшие газы которого оказались чище окружающего атмосферного воздуха, потребляемого двигателем.

При работе двигателей внутреннего сгорания на водороде вследствие значительно меньшего выделения твердых частиц и отсутствия органических кислот, образующихся при сгорании углеводородных топлив, увеличивается срок службы двигателя и сокращаются ремонтные расходы.

О недостатках

Газообразный водород обладает высокой диффузионной способностью - его коэффициент диффузии в воздухе более чем в 3 раза выше по сравнению с кислородом, двуокисью водорода и метаном.

Способность водорода проникать в толщу металлов, получившая название наводораживание, возрастает с повышением давления и температуры. Проникновение водорода в кристаллическую решетку большинства металлов на 4-6 мм при нагартовке снижается на 1,5-2 мм. Наводораживание алюминия, достигающее 15-30 мм, при нагартовке может быть снижено до 4-6 мм. Наводораживание большинства металлов практически полностью устраняется легированием хромом, молибденом, вольфрамом.

Углеродистые стали не пригодны для изготовления деталей, контактирующих с жидким водородом, так как становятся хрупкими при низких температурах, Для этих целей применяются хромоникелевые стали Х18Н10Т, ОХ18Н12Б, Х14Г14НЗТ, латуни Л-62, ЛС 69-1, ЛЖ МЦ 59-1-1, оловянофосфористая БР ОФ10-1, берилиевая БРБ2 и алюминиевые бронзы.

Криогенные (для низкотемпературных веществ) емкости для хранения жидкого водорода изготавливаются обычно из алюминиевых сплавов АМц, АМг, АМг-5В и др.

Смесь газообразного водорода с кислородом в широких пределах отличается склонностью к воспламеняемости и взрываемости. Поэтому закрытые помещения должны быть оборудованы детекторами, контролирующими его концентрацию в воздухе.

Высокая температура воспламенения и способность к быстрому рассеиванию в воздухе делают водород в открытых объемах по безопасности примерно равноценным природному газу.

Для определения взрывобезопасности при дорожно-транспортном происшествии жидкий водород из криогенной емкости проливали на землю, однако он мгновенно испарялся и не воспламенялся при попытках поджечь.

В США автомобиль «Кадиллак Эльдорадо», переоборудованный на водородное топливо, подвергался следующим испытаниям. В полностью заправленную гидридную емкость с водородом стреляли из винтовки бронебойными пулями. При этом взрыва не происходило, а бензобак при аналогичном испытании взрывался.

Таким образом, серьезные недостатки водорода - высокая диффузионная способность и широкая область воспламеняемости и взрываемости водородокислородной газовой смеси уже не являются причинами, препятствующими его применению на транспорте.

Перспективы

Как топливо водород уже применяется в ракетной технике. В настоящее время исследуются возможности его применения в авиации и на автомобильном транспорте. Уже известно, каким должен быть оптимальный водородный двигатель. Он должен иметь: степень сжатия 10-12, частоту вращения коленвала - не менее 3000 об/мин внутреннюю систему смесеобразования и работать при коэффициенте избытка воздуха α≥1,5. Но для реализации. такого двигателя нужно улучшить смесеобразование в цилиндре двигателя и выдать надежные рекомендации по конструированию.

Ученые прогнозируют начало широкого применения водородных двигателей на автомобилях не раньше 2000 г. До этого времени возможно применение добавок водорода к бензину; это позволит улучшить экономичность и снизить количество вредных выбросов в окружающую среду.

Представляет интерес перевод на водород роторно-поршневого двигателя, так как он не имеет картера и, следовательно, не взрывоопасен.

В настоящее время водород производят из природного газа. Использовать такой водород в качестве топлива невыгодно, дешевле сжигать в двигателях газ. Получение водорода разложением воды также экономически невыгодно из-за больших затрат энергии на расщепление молекулы воды Однако проводятся исследования и в этом направлении. Уже есть экспериментальные автомобили, снабженные собственной электролизной установкой, которая может подключаться к общей электросети; вырабатываемый водород накапливается в гидридном аккумуляторе.

На сегодняшний день стоимость электролитического водорода в 2,5 раза выше, чем получаемого из природного газа. Ученые объясняют это техническим несовершенством электролизеров и считают, что их КПД может быть увеличен в скором времени до 70-80%, в частности, за счет применения высокотемпературной технологии. По существующей технологии итоговый КПД электролитического производства водорода не превышает 30%.

Для прямого термического разложения воды требуется высокая температура порядка 5000 °С. Поэтому прямое разложение воды пока не осуществимо даже в термоядерном реакторе - трудно найти материалы, способные работать при такой температуре. Японским ученым Т. Накимурой для солнечных печей предложен двухступенчатый цикл разложения воды, не требующий столь высоких температур. Может быть, придет время, когда по двухступенчатому циклу водород будет вырабатываться гелиоводородными станциями, расположенными в океане, и ядерно-водородными станциями, вырабатывающими водорода больше, чем электроэнергии.

Как и природный газ, водород можно транспортировать по трубопроводам. Вследствие меньшей плотности и вязкости по одному и тому же трубопроводу при одинаковом давлении водорода можно перекачать в 2,7 раза больше, чем газа, однако затраты на транспортировку будут выше. Расходы энергии на транспортировку водорода по трубопроводам составят приблизительно 1% на 1000 кгс, что недостижимо для линий электропередач.

Водород можно хранить в газгольдерах с жидким затвором и в резервуарах. Во Франции уже есть опыт хранения под землей газа, содержащего 50% водорода. Жидкий водород можно хранить в криогенных емкостях, в гидридах металлов и в растворах.

Гидриды могут быть нечувствительны к загрязняющим примесям и способны селективно поглощать водород из газовой смеси. Это открывает возможность заправляться в ночное время от бытовой газовой сети, питаемой продуктами газификации угля.

Литература

  • 1. Владимиров А. Топливо больших скоростей. - Химия и жизнь. 1974, №12, с. 47-50.
  • 2. Воронов Г. Термоядерный реактор - источник водородного топлива. - Химия и жизнь, 1979, № 8, с. 17.
  • 3. Использование альтернативных топлив на автомобильном транспорте за рубежом. Обзорная информация. Серия 5. Экономика, управление и организация производства. ЦБНТИ Минавтотранса РСФСР, 1S82, вып. 2.
  • 4. Струминский В. В. Водород как топливо. - За рулем, 1980, Ко 8, с. 10-11.
  • 5. Xмыров В. И., Лавров Б. Е. Водородный двигатель. Алма-Ата, Наука, 1981.

Примечания

1. Редакция продолжает публикацию серии статей, посвященных перспективным видам топлива и проблемам экономии горючего (см. «КЯ» , ).

Последние материалы раздела:

Смотреть что такое
Смотреть что такое "душевный мир" в других словарях

Энциклопедический словарь 1. МИР, а; мн. миры, ов; м. 1. Совокупность всех форм материи в земном и космическом пространстве; Вселенная....

Наталья СтепановаМолитвенный щит
Наталья СтепановаМолитвенный щит

Все дело в том, дорогие мои, что Господь Бог наделил меня искренней любовью к людям. Этому меня учила и моя бабушка. Если говорить совсем кратко,...

Сонник: к чему снится Лошадь
Сонник: к чему снится Лошадь

Во сне дано не каждому, ведь это сильное, свободолюбивое животное может запросто скинуть своего наездника. Сон, в котором сновидец скачет на...