Работа сопротивления воздуха формула. Движение тела в поле тяжести с учётом сопротивления воздуха

Дорожная эксплуатационная мощность, затрачиваемая на преодоление сопротивлений, весьма велика (см. рис.). Например, для поддержания равномерного движения (190 км/ч ) четырех дверного седана, массой 1670 кг , площадью миделя 2,05 м 2 , С х = 0,45 требуется около 120 кВт мощности, причем 75 % мощности затрачивается на аэродинамическое сопротивление. Мощности, затрачиваемые на преодоление аэродинамического и дорожного (качения) сопротивления приблизительно равны на скорости 90 км/ч, и в сумме составляют 20 – 25 кВт .

Примечание к рисунку : сплошная линия – аэродинамическое сопротивление; пунктирная линия – сопротивление качению.

Сила сопротивления воздуха Р w обусловлена трением в прилегающих к поверхности автомобиля слоях воздуха, сжатием воздуха движущейся машиной, разрежением за машиной и вихреобразованием в окружающих автомобиль слоях воздуха. На величину аэродинамического сопротивления автомобиля влияет ряд и других факторов, главным из которых является его форма. В качестве упрощенного примера влияния формы автомобиля на его аэродинамическое сопротивление проиллюстрировано на схеме, приведенной ниже.

Направление движения автомобиля

Значительная часть всей силы сопротивления воздуха составляет лобовое сопротивление, которое зависит от лобовой площади (наибольшей площади поперечного сечения автомобиля).

Для определения силы сопротивления воздуха используют зависимость:

Р w = 0,5·с х ·ρ·F·v n ,

где с х – коэффициент, характеризующий форму тела и аэродинамическое качество машины (коэффициент аэродинамического сопротивления );

F - лобовая площадь автомобиля (площадь проекции на плоскость, перпендикулярную продольной оси), м 2 ;

v - скорость движения машины, м/с ;

n - показатель степени (для реальных скоростей движения автомобилей принимается равным 2).

ρ - плотность воздуха:

, кг/м 3 ,

где ρ 0 = 1,189 кг/м 3 , р 0 = 0,1 МПа , Т 0 = 293К – плотность, давление и температура воздуха при нормальных условиях;

ρ , р , Т – плотность, давление и температура воздуха при расчетных условиях.



При расчетах лобовую площадь F легковых автомобилей со стандар­тным кузовом определяют по приближенной формуле:

F = 0,8В г Н г ,

где В г - габаритная ширина автомобиля, м ;

Н г - габаритная высота автомобиля, м .

Для автобусов и грузовых автомобилей с кузовом в виде фургона или с тентом:

F = 0,9В Г Н Г .

Для условий работы автомобиля плотность воздуха изменяется мало (ρ = 1,24…1,26 кг/м 3 ). Заменив произведение (0,5·с х ·ρ ) , через к w , получим:

Р w = к w ·F·v 2 ,

где к w коэф­фициент обтекаемости ; по определению он представляет собой удельную силу в Н , необходимую для движения со скоростью 1 м/с в воздушной среде тела данной формы с лобовой площадью 1 м 2:

, Н·с 2 /м 4 .

Произведение (к w ·F )называют фактором сопротивления воздушной среды или фактором обтекаемости , характеризующим размеры и форму автомобиля в отношении свойств обтекаемости (его аэродинамические качества).

Средние значения коэффициентов с х , k w и лобовых площадей F для различных типов автомобилей приведены в табл. 2.1.

Таблица 2.1.

Параметры, характеризующие аэродинамические качества автомобилей :

Известные значения аэродинамических коэффициентов c x и k w и площади габаритного поперечного (миделевого) сечения F для некоторых серийно выпускаемых автомобилей (по данным заводов-изготовителей) приведены в табл. 2.1.-а .

Таблица 2.1-а.

Аэродинамические коэффициенты и лобовая площадь автомобилей:

Автомобиль с х к w F
ВАЗ-2121 0,56 0,35 1,8
ВАЗ-2110 0,334 0,208 2,04
М-2141 0,38 0,24 1,89
ГАЗ-2410 0,34 0,3 2,28
ГАЗ-3105 0,32 0,22 2,1
ГАЗ-3110 0,56 0,348 2,28
ГАЗ-3111 0,453 0,282 2,3
«Ока» 0,409 0,255 1,69
УАЗ-3160 (jeep) 0,527 0,328 3,31
ГАЗ-3302 бортовой 0,59 0,37 3,6
ГАЗ-3302 фургон 0,54 0,34 5,0
ЗИЛ-130 бортовой 0,87 0,54 5,05
КамАЗ-5320 бортовой 0,728 0,453 6,0
КамАЗ-5320 тентовый 0,68 0,43 7,6
МАЗ-500А тентовый 0,72 0,45 8,5
МАЗ-5336 тентовый 0,79 0,52 8,3
ЗИЛ-4331 тентовый 0,66 0,41 7,5
ЗИЛ-5301 0,642 0,34 5,8
Урал-4320 (military) 0,836 0,52 5,6
КрАЗ (military) 0,551 0,343 8,5
ЛиАЗ bus (city) 0,816 0,508 7,3
ПАЗ-3205 bus (city) 0,70 0,436 6,8
Ikarus bus (city) 0,794 0,494 7,5
Mercedes-Е 0,322 0,2 2,28
Mercedes-А (kombi) 0,332 0,206 2,31
Mercedes -ML (jeep) 0,438 0,27 2,77
Audi A-2 0,313 0,195 2,21
Audi A-3 0,329 0,205 2,12
Audi S 3 0,336 0,209 2,12
Audi A-4 0,319 0,199 2,1
BMW 525i 0,289 0,18 2,1
BMW- 3 0,293 0,182 2,19
Citroen X sara 0,332 0,207 2,02
DAF 95 trailer 0,626 0,39 8,5
Ferrari 360 0,364 0,227 1,99
Ferrari 550 0,313 0,195 2,11
Fiat Punto 60 0,341 0,21 2,09
Ford Escort 0,362 0,225 2,11
Ford Mondeo 0,352 0,219 2,66
Honda Civic 0,355 0,221 2,16
Jaguar S 0,385 0,24 2,24
Jaguar XK 0,418 0,26 2,01
Jeep Cherokes 0,475 0,296 2,48
McLaren F1 Sport 0,319 0,198 1,80
Mazda 626 0,322 0,20 2,08
Mitsubishi Colt 0,337 0,21 2,02
Mitsubishi Space Star 0,341 0,212 2,28
Nissan Almera 0,38 0,236 1,99
Nissan Maxima 0,351 0,218 2,18
Opel Astra 0,34 0,21 2,06
Peugeot 206 0,339 0,21 2,01
Peugeot 307 0,326 0,203 2,22
Peugeot 607 0,311 0,19 2,28
Porsche 911 0,332 0,206 1,95
Renault Clio 0,349 0,217 1,98
Renault Laguna 0,318 0,198 2,14
Skoda Felicia 0,339 0,21 2,1
Subaru Impreza 0,371 0,23 2,12
Suzuki Alto 0,384 0,239 1,8
Toyota Corolla 0,327 0,20 2,08
Toyota Avensis 0,327 0,203 2,08
VW Lupo 0,316 0,197 2,02
VW Beetl 0,387 0,24 2,2
VW Bora 0,328 0,204 2,14
Volvo S 40 0,348 0,217 2,06
Volvo S 60 0,321 0,20 2,19
Volvo S 80 0,325 0,203 2,26
Volvo B12 bus (tourist) 0,493 0,307 8,2
MAN FRH422 bus (city) 0,511 0,318 8,0
Mercedes 0404(inter city) 0,50 0,311 10,0

Примечание: c x , Н·с 2 /м·кг; к w , Н·с 2 /м 4 – аэродинамические коэффициенты;

F , м 2 – лобовая площадь автомобиля.

Для автомобилей, имеющих высокие скорости движения, сила Р w имеет доминирующее значение. Сопротивление воздушной среды определяется относительной скоростью автомобиля и воздуха, поэтому при её определении следует учитывать влияние ветра.

Точка приложения результирующей силы сопротивления воздуха Р w (центр парусности) лежит в поперечной (лобовой) плоскости симметрии автомобиля. Высота расположения этого центра над опорной поверхностью дороги h w оказывает значительное влияние на устойчивость автомобиля при движении его с высокими скоростями.

Увеличение Р w может привести к тому, что продольный опрокидывающий момент Р w ·h w настолько разгрузит передние колеса машины, что последняя потеряет управляемость вследствие плохого контакта управляемых колес с дорогой. Боковой ветер может вызвать занос автомобиля, который будет тем более вероятен, чем выше расположен центр парусности.

Попадающий в пространство между нижней части автомобиля и дорогой воздух создает дополнительное сопротивление движению за счет эффекта интенсивного образования вихрей. Для снижения этого сопротивления желательно передней части автомобиля придавать конфигурацию, которая препятствовала бы попадание встречного воздуха под его нижнюю часть.

По сравнению с одиночным автомобилем коэффициент сопротивления воздуха автопоезда с обычным прицепом выше на 20…30%, а с седельным прицепом – примерно на 10%. Антенна, зеркало внешнего вида, багажник над крышей, дополнительные фары и другие выступающие детали или открытые окна увеличивают сопротивление воздуха.

При скорости движения автомобиля до 40 км/ч сила Р w меньше силы сопротивления качению Р f на асфальтированной дороге. При скоростях свыше 100 км/ч сила сопротивления воздуха представляет собой основную составляющую тягового баланса автомобиля.

Грузовые автомобили имеют плохо обтекаемые формы с резкими углами и большим числом выступающих частей. Чтобы снизить Р w , на грузовиках устанавливают над кабиной обтекатели и другие приспособления.

Подъемная аэродинамическая сила . Появление подъемной аэродинамической силы обусловлено перепадом давлений воздуха на автомобиль снизу и сверху (по аналогии подъемной силы крыла самолета). Преобладание давления воздуха снизу над давлением сверху объясняется тем, что скорость воздушного потока, обтекающего автомобиль снизу, гораздо меньше, чем сверху. Значение подъемной аэродинамической силы не превышает 1,5% от веса самого автомобиля. Например, для легкового автомобиля ГАЗ-3102 «Волга» подъемная аэродинамическая сила при скорости движения 100 км/ч составляет около 1,3% от собственного веса автомобиля.

Спортивным автомобилям, движущимся с большими скоростями, придают такую форму, при которой подъемная сила направлена вниз, которая прижимает автомобиль к дороге. Иногда с этой же целью такие автомобили оснащают специальными аэродинамическими плоскостями.

3.5. Законы сохранения и изменения энергии

3.5.1. Закон изменения полной механической энергии

Изменение полной механической энергии системы тел происходит при совершении работы силами, действующими как между телами системы, так и со стороны внешних тел.

Изменение механической энергии ∆E системы тел определяется законом изменения полной механической энергии :

∆E = E 2 − E 1 = A внеш + A тр(сопр) ,

где E 1 - полная механическая энергия начального состояния системы; E 2 - полная механическая энергия конечного состояния системы; A внеш - работа, совершаемая над телами системы внешними силами; A тр(сопр) - работа, совершаемая силами трения (сопротивления), действующими внутри системы.

Пример 30. На некоторой высоте покоящееся тело имеет потенциальную энергию, равную 56 Дж. К моменту падения на Землю тело имеет кинетическую энергию, равную 44 Дж. Определить работу сил сопротивления воздуха.

Решение. На рисунке показаны два положения тела: на некоторой высоте (первое) и к моменту падения на Землю (второе). Нулевой уровень потенциальной энергии выбран на поверхности Земли.

Полная механическая энергия тела относительно поверхности Земли определяется суммой потенциальной и кинетической энергии:

  • на некоторой высоте

E 1 = W p 1 + W k 1 ;

  • к моменту падения на Землю

E 2 = W p 2 + W k 2 ,

где W p 1 = 56 Дж - потенциальная энергия тела на некоторой высоте; W k 1 = 0 - кинетическая энергия покоящегося на некоторой высоте тела; W p 2 = 0 Дж - потенциальная энергия тела к моменту падения на Землю; W k 2 = 44 Дж - кинетическая энергия тела к моменту падения на Землю.

Работу сил сопротивления воздуха найдем из закона изменения полной механической энергии тела:

где E 1 = W p 1 - полная механическая энергия тела на некоторой высоте; E 2 = W k 2 - полная механическая энергия тела к моменту падения на Землю; A внеш = 0 - работа внешних сил (внешние силы отсутствуют); A сопр - работа сил сопротивления воздуха.

Искомая работа сил сопротивления воздуха, таким образом, определяется выражением

A сопр = W k 2 − W p 1 .

Произведем вычисление:

A сопр = 44 − 56 = −12 Дж.

Работа сил сопротивления воздуха является отрицательной величиной.

Пример 31. Две пружины с коэффициентами жесткости 1,0 кН/м и 2,0 кН/м соединены параллельно. Какую работу нужно совершить, чтобы растянуть систему пружин на 20 см?

Решение. На рисунке показаны две пружины с разными коэффициентами жесткости, соединенные параллельно.

Внешняя сила F → , растягивающая пружины, зависит от величины деформации составной пружины, поэтому расчет работы указанной силы по формуле для вычисления работы постоянной силы неправомерен.

Для расчета работы воспользуемся законом изменения полной механической энергии системы:

E 2 − E 1 = A внеш + A сопр,

где E 1 - полная механическая энергия составной пружины в недеформированном состоянии; E 2 - полная механическая энергия деформированной пружины; A внеш - работа внешней силы (искомая величина); A сопр = 0 - работа сил сопротивления.

Полная механическая энергия составной пружины представляет собой потенциальную энергию ее деформации:

  • для недеформированной пружины

E 1 = W p 1 = 0,

  • для растянутой пружины

E 2 = W p 2 = k общ (Δ l) 2 2 ,

где k общ - общий коэффицент жесткости составной пружины; ∆l - величина растяжения пружины.

Общий коэффициент жесткости двух пружин, соединенных параллельно, есть сумма

k общ = k 1 + k 2 ,

где k 1 - коэффициент жесткости первой пружины; k 2 - коэффициент жесткости второй пружины.

Работу внешней силы найдем из закона изменения полной механической энергии тела:

A внеш = E 2 − E 1 ,

подставив в данное выражение формулы, определяющие E 1 и E 2 , а также выражение для общего коэффициента жесткости составной пружины:

A внеш = k общ (Δ l) 2 2 − 0 = (k 1 + k 2) (Δ l) 2 2 .

Выполним расчет:

A внеш = (1,0 + 2,0) ⋅ 10 3 ⋅ (20 ⋅ 10 − 2) 2 2 = 60 Дж.

Пример 32. Пуля массой 10,0 г, летящая со скоростью 800 м/с, попадает в стену. Модуль силы сопротивления движению пули в стене постоянен и составляет 8,00 кН. Определить, на какое расстояние пуля углубится в стену.

Решение. На рисунке показаны два положения пули: при ее подлете к стене (первое) и к моменту остановки (застревания) пули в стене (второе).

Полная механическая энергия пули яв­ляется кинетической энергией ее движения:

  • при подлете пули к стене

E 1 = W k 1 = m v 1 2 2 ;

  • к моменту остановки (застревания) пули в стене

E 2 = W k 2 = m v 2 2 2 ,

где W k 1 - кинетическая энергия пули при подлете к стене; W k 2 - кинетическая энергия пули к моменту ее остановки (застревания) в стене; m - масса пули; v 1 - модуль скорости пули при подлете к стене; v 2 = 0 - величина скорости пули к моменту остановки (застревания) в стене.

Расстояние, на которое пуля углубится в стену, найдем из закона изменения полной механической энергии пули:

E 2 − E 1 = A внеш + A сопр,

где E 1 = m v 1 2 2 - полная механическая энергия пули при подлете к стене; E 2 = 0 - полная механическая энергия пули к моменту ее остановки (застревания) в стене; A внеш = 0 - работа внешних сил (внешние силы отсутствуют); A сопр - работа сил сопротивления.

Работа сил сопротивления определяется произведением:

A сопр = F сопр l cos α ,

где F сопр - модуль силы сопротивления движению пули; l - расстояние, на которое углубится пуля в стену; α = 180° - угол между направлениями силы сопротивления и направлением движения пули.

Таким образом, закон изменения полной механической энергии пули в явном виде выглядит следующим образом:

− m v 1 2 2 = F сопр l cos 180 ° .

Искомое расстояние определяется отношением

l = − m v 1 2 2 F сопр cos 180 ° = m v 1 2 2 F сопр

l = 10,0 ⋅ 10 − 3 ⋅ 800 2 2 ⋅ 8,00 ⋅ 10 3 = 0,40 м = 400 мм.

Каждый велосипедист, мотоциклист, шофер, машинист, летчик или капитан корабля знает, что у его машины есть предельная скорость; превысить которую не удается никакими усилиями. Можно сколько угодно нажимать на педаль газа, но «выжать» из машины лишний километр в час невозможно. Вся развиваемая скорость идет на преодоление сил сопротивления движению .

Преодоление различного трения

Например, автомобиль имеет двигатель мощностью в пятьдесят лошадиных сил. Когда водитель нажимает газ до отказа, коленчатый вал двигателя начинает делать три тысячи шестьсот оборотов в минуту. Поршни как сумасшедшие мечутся вверх и вниз, подскакивают клапаны, вертятся шестеренки, а автомобиль движется хотя и очень быстро, но совершенно равномерно, и вся сила тяги двигателя уходит на преодоление сил сопротивления движению, в частности преодоление различного трения . Вот, например, как распределяется сила тяги двигателя между его «противниками» - разными видами при скорости автомобиля сто километров в час:
  • на преодоление трения в подшипниках и между шестеренками расходуется около шестнадцати процентов силы тяги мотора,
  • на преодоление трения качения колес по дороге - примерно двадцать четыре процента,
  • на преодоление сопротивления воздуха расходуется шестьдесят процентов силы тяги автомобиля.

Сопротивление воздуха

При рассмотрении сил сопротивления движению, таких как:
  • трение скольжения с увеличением скорости немного уменьшается,
  • трение качения изменяется очень незначительно,
  • сопротивление воздуха , совершенно незаметное при медленном движении, становится грозной тормозящей силой, когда скорость возрастает.
Воздух оказывается главным врагом быстрого движения . Поэтому кузовам автомобилей, тепловозам, палубным надстройкам пароходов придают округленную, обтекаемую форму, убирают все выступающие части, стараются сделать так, чтобы воздух мог их плавно обегать. Когда строят гоночные машины и хотят добиться от них наивысшей скорости, то для кузова автомобиля заимствуют форму у рыбьего туловища, а на такую скоростную машину ставят двигатель мощностью несколько тысяч лошадиных сил. Но что бы ни делали изобретатели, как бы ни улучшали обтекаемость кузова, всегда за всяким движением, как тень, следуют силы трения и сопротивления среды. И если они даже не увеличиваются, остаются постоянными, все равно машина будет иметь предел скорости. Объясняется это тем, что мощность машины - произведение силы тяги на ее скорость . Но раз движение равномерное - сила тяги целиком уходит на преодоление различных сил сопротивления. Если добиться уменьшения этих сил, то при данной мощности машина сможет развить большую скорость. А так как основным врагом движения при больших скоростях является сопротивление воздуха, то для борьбы с ним конструкторам и приходится так изощряться.

Сопротивлением воздуха заинтересовались артиллеристы

Сопротивлением воздуха прежде всего заинтересовались артиллеристы . Они старались понять, почему пушечные снаряды не так далеко летят, как им хотелось бы. Расчеты показали, что, если бы на Земле не было воздуха, снаряд семидесятишестимиллиметровой пушки пролетел бы не менее двадцати трех с половиной километров , а в действительности он падает всего лишь в семи километрах от пушки . Из-за сопротивления воздуха теряется шестнадцать с половиной километров дальности . Обидно, но ничего не поделаешь! Артиллеристы улучшали пушки и снаряды, руководствуясь главным образом догадкой и смекалкой. Что происходит со снарядом в воздухе, сначала было неизвестно. Хотелось бы посмотреть на летящий снаряд и увидеть, как он рассекает воздух, но снаряд летит очень быстро, глаз не может уловить его движения, а воздух и подавно невидим. Желание казалось несбыточным, но выручила фотография. При свете электрической искры удалось заснять летящую пулю. Искра сверкнула и на мгновение осветила пулю, пролетавшую перед объективом фотоаппарата. Ее блеска оказалось достаточно, чтобы получить моментальный снимок не только пули, но и воздуха, рассекаемого ею. На фотографии были видны темные полосы, расходящиеся от пули в стороны. Благодаря фотоснимкам стало ясно, что происходит, когда снаряд летит в воздухе. При медленном движении предмета частицы воздуха спокойно расступаются перед ним и почти не мешают ему, но при быстром - картина меняется, частицы воздуха уже не успевают разлетаться в стороны. Снаряд летит и, как поршень насоса, гонит впереди себя воздух и уплотняет его. Чем выше скорость, тем сильнее сжатие и уплотнение. Для того чтобы снаряд двигался быстрее, лучше пробивал уплотненный воздух, его головную часть делают заостренной.

Полоса завихренного воздуха

На фотоснимке летящей пули было видно, что-у нее позади возникает полоса завихренного воздуха . На образование вихрей тоже тратится часть энергии пули или снаряда. Поэтому у снарядов и пуль стали делать донную часть скошенной, это уменьшило силу сопротивления движению в воздухе. Благодаря скошенному дну дальность полета снаряда семидесятишестимиллиметровой пушки достигла одиннадцати - двенадцати километров .

Трение частиц воздуха

При полете в воздухе на скорости движения сказывается также трение частиц воздуха о стенки летящего предмета. Это трение невелико, но оно все же существует и нагревает поверхность. Поэтому приходится красить самолеты глянцевитой краской и покрывать их особым авиационным лаком. Таким образом, силы сопротивления движению в воздухе всем движущимся предметам возникают вследствие трех различных явлений:
  • уплотнения воздуха впереди,
  • образования завихрений позади,
  • небольшого трения воздуха о боковую поверхность предмета.

Сопротивление движению со стороны воды

Предметы, движущиеся в воде - рыбы, подводные лодки, самоходные мины - торпеды и проч., - встречают большое сопротивление движению со стороны воды . С увеличением скорости силы сопротивления воды растут еще быстрее, чем в воздухе. Поэтому и значение обтекаемой формы возрастает. Достаточно взглянуть на форму тела щуки. Она должна гоняться за мелкими рыбешками, поэтому для нее важно, чтобы вода оказывала минимальное сопротивление ее движению.
Форму рыбы придают самоходным торпедам, которые должны быстро поражать неприятельские суда, не давая им возможности уклониться от удара. Когда моторная лодка мчится по водной глади или торпедные катера идут в атаку, видно, как острый нос корабля или лодки режет волны, обращая их в белоснежную пену, а за кормой кипит бурун и остается полоса вспененной воды. Сопротивление воды напоминает сопротивление воздуха - вправо и влево от корабля бегут волны, а позади образуются завихрения - пенистые буруны; сказывается также и трение между водой и погруженной частью корабля. Разница между движением в воздухе и движением в воде состоит только в том, что вода - жидкость несжимаемая и перед кораблем не возникает уплотненной «подушки», которую приходится пробивать. Зато плотность воды почти в тысячу раз больше плотности воздуха . Вязкость воды тоже значительна. Вода не так-то уж охотно и легко расступается перед кораблем, поэтому сопротивление движению, которое она оказывает предметам, весьма велико. Попробуйте, например, нырнув под воду, похлопать там в ладоши. Это не удастся - вода не позволит. Скорости морских кораблей значительно уступают скоростям воздушных кораблей. Наиболее быстроходные из морских судов - торпедные катера развивают скорость в пятьдесят узлов, а глиссеры, скользящие по поверхности воды, - до ста двадцати узлов. (Узел - морская мера скорости; один узел составляет 1852 метра в час.)

Силами сопротивления называются силы, препятствующие движению автомобиля. Эти силы направлены против его движе­ния.

При движении на подъеме, характеризуемом высотой H п, длиной проекции В п на гори­зонтальную плоскость и углом подъема дороги α, на автомобиль действуют следующие силы со­противления (рис. 3.12): сила со­противления качению Р к , равная сумме сил сопротивления каче­нию передних (Р К|) и задних (Р К2) колес, сила сопротивления подъе­му Р п , сила сопротивления воз­духа Д и сила сопротивления раз­гону Р И . Силы сопротивления ка­чению и подъему связаны с особенностями дороги. Сумма этих сил называется силой сопротивления дороги Р Д .

Рис. 3.13. Потери энергии на внутреннее трение в шине:

а - точка, соответствующая мак­симальным значениям нагрузки и прогиба шины

Сила сопротивления качению

Возникновение силы сопротивления качению при движении обусловлено потерями энергии на внутреннее трение в шинах, поверхностное трение шин о дорогу и образование колеи (на деформируемых дорогах).О потерях энергии на внутреннее трение в шине можно судить по рис. 3.13, на котором приведена зависимость между вертикаль­ной нагрузкой на колесо и деформацией шины - ее прогибом f ш .

При движении колеса по неровной поверхности шина, испы­тывая действие переменной нагрузки, деформируется. Линия αО, которая соответствует возрастанию нагрузки, деформирующей шину, не совпадает с линией аО, отвечающей снятию нагрузки. Площадь области, заключенной между указанными кривыми, ха­рактеризует потери энергии на внутреннее трение между отдель­ными частями шины (протектор, каркас, слои корда и др.).

Потери энергии на трение в шине называются гистерезисом, а линия ОαО - петлей гистерезиса.

Потери на трение в шине необратимы, так как при деформа­ции она нагревается и из нее выделяется теплота, которая рассе­ивается в окружающую среду. Энергия, затрачиваемая на дефор­мацию шины, не возвращается полностью при последующем вос­становлении ее формы.

Сила сопротивления качению Р к достигает наибольшего зна­чения при движении по горизонтальной дороге. В этом случае

где G - вес автомобиля, Н; f - коэффициент сопротивления качению.

При движении на подъеме и спуске сила сопротивления каче­нию уменьшается по сравнению с Р к на горизонтальной дороге, и тем значительнее, чем они круче. Для этого случая движения сила сопротивления качению

где α - угол подъема, °.

Зная силу сопротивления качению, можно определить мощ­ность, кВт,

затрачиваемую на преодоление этого сопротивления:

где v -скорости автомобиля,м/c 2

Для горизонтальной дороги соs0°=1 и

З
ависимости силы сопротивления качениюР к и мощности N К от скорости автомобиля v показаны на рис. 3.14

Коэффициент сопротивления качению

Коэффициент сопротивления качению существенно влияет на потери энергии при движении автомобиля. Он зависит от многих конструктивных и эксплуатационных

Рис 3.15. Зависимости коэффициента сопротивления качению от

Скорости движения (а), давления воздуха в шине (б) и момента, передаваемого через колесо (в)

факторов и определяется экспериментально. Его средние значения для различных дорог при нормальном давлении воздуха в шине составляют 0,01 ...0,1.Рассмотрим влияние различных факторов на коэффициент сопротивления качению.

Скорость движения . При изменении скорости движения в ин­тервале 0...50 км/ч коэффициент сопротивления качению изме­няется незначительно и его можно считать постоянным в указан­ном диапазоне скоростей.

При повышении скорости движения за пределами указанного интервала коэффициент сопротивления качению существенно уве­личивается (рис. 3.15, а) вследствие возрастания потерь энергии в шине на трение.

Коэффициент сопротивления качению в зависимости от ско­рости движения можно приближенно рассчитать по формуле

где - скорость автомобиля, км/ч.

Тип и состояние покрытия дороги. На дорогах с твердым по­крытием сопротивление качению обусловлено главным образом деформациями шины.

При увеличении числа дорожных неровностей коэффициент сопротивления качению возрастает.

На деформируемых дорогах коэффициент сопротивления ка­чению определяется деформациями шины и дороги. В этом случае он зависит не только от типа шины, но и от глубины образую­щейся колеи и состояния грунта.

Значения коэффициента сопротивления качению при рекомен­дуемых уровнях давления воздуха и нагрузки на шину и средней скорости движения на различных дорогах приведены ниже:

Асфальто- и цементобетонное шоссе:

в хорошем состоянии..................................... 0,007...0,015

в удовлетворительном состоянии............... 0,015...0,02

Гравийная дорога в хорошем состоянии.... 0,02...0,025

Булыжная дорога в хорошем состоянии...... 0,025...0,03

Грунтовая дорога сухая, укатанная.............. 0,025...0,03

Песок.................................................................... 0,1...0,3

Обледенелая дорога, лед............................... 0,015...0,03

Укатанная снежная дорога............................. 0,03...0,05

Тип шины. Коэффициент сопротивления качению во многом зависит от рисунка протектора, его износа, конструкции каркаса и качества материала шины. Изношенность протектора, уменьше­ние числа слоев корда и улучшение качества материала приводят к падению коэффициента сопротивления качению вследствие снижения потерь энергии в шине.

Давление воздуха в шине . На дорогах с твердым покрытием при уменьшении давления воздуха в шине коэффициент сопро­тивления качению повышается (рис. 3.15, б). На деформируемых дорогах при снижении давления воздуха в шине уменьшается глу­бина колеи, но возрастают потери на внутреннее трение в шине. Поэтому для каждого типа дороги рекомендуется определенное давление воздуха в шине, при котором коэффициент сопротивле­ния качению имеет минимальное значение.

. При увеличении вертикальной нагрузки на колесо коэффициент сопротивления качению существенно возрастает на деформируемых дорогах и незначительно - на до­рогах с твердым покрытием.

Момент, передаваемый через колесо . При передаче момента через колесо коэффициент сопротивления качению возрастает (рис. 3.15, в) вследствие потерь на проскальзывание шины в месте ее контакта с дорогой. Для ведущих колес значение коэффициента сопротивления качению на 10... 15 % больше, чем для ведомых.

Коэффициент сопротивления качению оказывает существен­ное влияние на расход топлива и, следовательно, на топливную экономичность автомобиля. Исследования показали, что даже не­большое уменьшение этого коэффициента обеспечивает ощути­мую экономию топлива. Поэтому неслучайно стремление конст­рукторов и исследователей создать такие шины, при использова­нии которых коэффициент сопротивления качению будет незна­чительным, но это весьма сложная проблема.

Решение.

Для решения задачи рассмотрим физическую систему «тело – гравитационное поле Земли». Тело будем считать материальной точкой, а гравитационное поле Земли - однородным. Выделенная физическая система является незамкнутой, т.к. во время движения тела взаимодействует с воздухом.
Если не учитывать выталкивающую силу, действующую на тело со стороны воздуха, то изменение полной механической энергии системы равняется работе силы сопротивления воздуха, т.е. ∆ E = A c .

Нулевой уровень потенциальной энергии выберем на поверхности Земли. Единственной внешней силой в отношении системы «тело – Земля» является сила сопротивления воздуха, направленная вертикально вверх. Начальная энергия системы E 1 , конечная E 2 .

Работа силы сопротивления A.

Т.к. угол между силой сопротивления и перемещением равен 180° , то косинус равен -1, поэтому A = - F c h . Приравняем A.

Рассматриваемую незамкнутую физическую систему можно также описать теоремой от изменении кинетической энергии системы взаимодействующих между собой объектов, согласно которой изменение кинетической энергии системы равно работе, совершенной внешними и внутренними силами при ее переходе из начального состояния в конечное. Если не учитывать выталкивающую силу, действующую на тело со стороны воздуха, а внутренней – сила тяжести. Следовательно ∆ E к = A 1 + A 2 , где A 1 = mgh – работа силы тяжести, A 2 = F c hcos 180° = - F c h – работа силы сопротивления; ∆ E = E 2 – E 1 .

Последние материалы раздела:

Смотреть что такое
Смотреть что такое "душевный мир" в других словарях

Энциклопедический словарь 1. МИР, а; мн. миры, ов; м. 1. Совокупность всех форм материи в земном и космическом пространстве; Вселенная....

Наталья СтепановаМолитвенный щит
Наталья СтепановаМолитвенный щит

Все дело в том, дорогие мои, что Господь Бог наделил меня искренней любовью к людям. Этому меня учила и моя бабушка. Если говорить совсем кратко,...

Сонник: к чему снится Лошадь
Сонник: к чему снится Лошадь

Во сне дано не каждому, ведь это сильное, свободолюбивое животное может запросто скинуть своего наездника. Сон, в котором сновидец скачет на...