Транспортный поток. Состояние транспортной сети и характеристики транспортного потока

Принятие решений по организации дорожного движения и перевозок, планированию работы транспортных систем, оценка эффективности функционирования улично-дорожной сети возможны только на основе изучения параметров транспортных потоков и зависимостей между ними в конкретных условиях. Поэтому сбор и обработка информации о зависимостях между основными характеристиками транспортных потоков - интенсивностью, плотностью и скоростью - является существенной частью деятельности по организации дорожного движения Сводная таблица основных параметров дорожного движения приведена в таблице 6.1.

Таблица 6.1.

Интенсивность движения q (x,t 1 ,t 2) - это количество транспортных средств, проходящих через какое-либо сечение или отрезок дороги за единицу времени (рис. 6.1). Наиболее часто в качестве промежутка времени принимается один час, и, соответственно, интенсивность движения определяется как авт/час . При решении некоторых задач используется информация о суточной и среднегодовой интенсивности движения.

Одной из основных особенностей изменения интенсивности движения является ее неравномерность во времени и пространстве. Распределение интенсивности движения по временным периодам определяется целями поездок и их частотой. Пространственное распределение интенсивности движения связано с распределением грузо - и пассажирообразующих пунктов, их концентрацией и мощностью.

Рис. 6.1. Схем движения транспортных средств на участке Х 1 Х 2 в течение времениt 1 ; t 2 .

Факторы, влияющие на формирование потребности в поездках, в значительной степени подвержены воздействию случайной составляющей, соответственно, случайным образом происходит и изменение интенсивности движения. Поэтому наиболее надежным методом оценки транспортной нагрузки является систематическое измерение интенсивности движения на дорожной сети.

Важнейшей информацией, которой руководствуются при организации дорожного движения, являются сведения о пиковых нагрузках. Изменение интенсивности движения в течение суток характеризуется прежде всего наличием утреннего и вечернего часов пик. В течение этих периодов времени отмечается высокая транспортная нагрузка, которая создает значительные проблемы участникам дорожного движения. Во время часа пик транспортная нагрузка составляет около 15 % суточной. Типичный график изменения интенсивности движения в течение суток приведен на рис. 6.2.

Рис. 6. 3. Выделение пикового периода времени

Анализ изменения транспортной нагрузки показывает, что, вследствие неравномерности изменения интенсивности движения, внутри часа пик возможно существование периодов времени, в которые интенсивность превышает среднепиковые нагрузки Поэтому интенсивность движения в час пик рекомендуется анализировать по пяти­минутным периодам В этом случае выделяют пиковый период - непрерывный интервал времени, в течение которого пятиминутные интенсивности движения превышают среднюю для всего часа пик интенсивность (рис. 6.3).

В данном примере интенсивность движения в 15-минутный период пик на 20% превышает среднюю интенсивность за час пик. Игнорирование этого фактора может привести к ошибочным решениям при разработке схем организации дорожного движения.

Сезонные колебания интенсивности движения способствуют формированию плотных транспортных потоков в летний период времени.

Пространственные колебания интенсивности движения проявляются в разном уровне транспортной нагрузки на различных участках улично-дорожной сети.

Неравномерность интенсивности движения оценивается коэффициентом неравномерностиК н ,представляющим собой отношение фактической интенсивностиq ф за рассматриваемый промежуток времени к средней интенсивностиq c за более длительный промежуток времени:

(6.1)

Так, например, коэффициент годовой неравности

(6.2)

Где 12 – число месяцев в году, q i интенсивность движения за рассматриваемый месяц.

Интенсивность движения оказывает влияние на транспортные затраты (рис. 6.4).

Состав транспортного потока существенным образом влияет на условия и режимы движения автомобилей. Оценка состава транспортного потока осуществляется, в основном, по процентному составу или доле транспортных средств различных типов. Объективная оценка уровня транспортной нагрузки, сравнение уровня загрузки различных магистралей могут быть произведены только с учетом состава транспортного потока.

Влияние состава потока на другие характеристики дорожного движения обусловлено многими факторами. Во многом это происходит вследствие различия динамических и тормозных качеств легковых и грузовых автомобилей. На рис. 6. 5 приведены нормативные данные о длине тормозного пути для грузовых и легковых автомобилей. В процессе эксплуатации эти различия становятся еще более ощутимыми. Поэтому в смешанном транспортном потоке повышается вероятность возникновения потенциально опасных ситуаций.

Более низкая скорость движения грузовых автомобилей по сравнению с легковыми вынуждает водителей легковых автомобилей совершать обгоны для поддержания приемлемого для них скоростного режима. Маневрирование осуществляется в условиях ограниченной видимости при следовании легкового автомобиля за грузовым и также повышает риск попадания в ДТП.

Все эти аспекты обусловили необходимость применения коэффициентов приведения к условному легковому автомобилю. Определение значений коэффициентов приведения базируется на сравнении динамических габаритов различных типов транспортных средств Динамическим габаритом автомобиля Dназывается отрезок полосы дороги, включающий длину автомобиля и дистанцию, необходимую для безопасного следования за впереди идущим автомобилем (рис. 6.6).

В соответствии со СНиП 2 05-85 значения коэффициентов приведения к условному легковому автомобилю следует принимать

Рис. 6.4. Изменение затрат С на пробег в зависимости от интенсивности q движения: 1 - легковой автомобиль; 2 - грузовой автомобиль; 3 – автопоезд.

Рис. 6.6. Динамический габарит автомобиля

Рис. 6.5. Нормативные значения тормозного пути легковых и грузовых автомобилей в зависимости от скорости

легковые автомобили

грузовые автомобили грузоподъемностью:

от 2 до 6 т

от 6 до 8 т

от 8 до 14 т

свыше 14 т

автопоезда грузоподъемностью до 12 т

автопоезда грузоподъемностью от 12 до 20 т

автобусы

троллейбусы

сочлененные автобусы и троллейбусы

Расчет интенсивности движения в приведенных единицах производится по формуле

где q пр - интенсивность движения в приведенных единицах,q i - интенсивность движения автомобилейi -го типа,К пр i - коэффициент приведения автомобилейi - го типа

Важность использования коэффициентов приведения при решении практических задач организации дорожного движения видна на примере анализа транспортной нагрузки на двух участках дорог. На первом участке при суммарной интенсивности движения 500 авт/ч распределение автомобилей по типам имеет следующий вид легко вые - 400, грузовые грузоподъемностью до 2 т - 80, автобусы - 20 На другом участке при той же интенсивности движения 500 авт/ч состав потока отличается: легковые - 200, грузовые до 2 т - 100, грузовые от 2 до 6 т - 100, автопоезда до 12 т - 60, автобусы - 40. С учетом состава потока интенсивность движения в приведенных единицах на первом участке составляет 570 авт/ч,на втором - 760 авт/ч.

В зависимости от преобладания в потоке того или иного типа транспортного средства условно транспортный поток относят к одной из трех групп: смешанный поток (30-70% легковых автомобилей, 70-30% грузовых автомобилей), преимущественно грузовой (более 70% грузовых автомобилей), преимущественно легковой (более 70 % легковых автомобилей)

Плотность транспортного потока k 1 , x 2 , t ) определяется числом транспортных средств, приходящихся на 1 км полосы дороги. Единица измерения плотности транспортного потока - авт/км. С увеличением плотности транспортного потока сокращается дистанция между автомобилями, снижается скорость движения, увеличивается напряженность труда водителя, ухудшаются условия движения. Максимальная плотность транспортного потока достигается в заторовых ситуациях. Численные значения максимальной плотности определяются составом потока. Для смешанного состава транспортного потока она составляет около 100 авт/км, для преимущественно легковых автомобилей - до 150 авт/км.

Основные трудности использования информации о плотности транспортного потока связаны со сложностью непосредственного измерения этого параметра дорожного движения.

В организации дорожного движения в зависимости от методов измерения и расчета сложилась определенная терминология при характеристике скорости.

Временная (мгновенная) скорость - скорость транспортного средства в каком-либо сечении дороги. Измерение мгновенной скорости не представляет трудностей, т к. при этом используются разнообразные средства измерений: секундомер, фиксирующий прохождение мерного участка; видеокамера; радар; транспортный детектор. Кроме того, для получения достоверных результатов можно замерить скорости множества автомобилей в транспортном потоке. Поэтому мгновенная скорость наиболее широко применяется в практической деятельности по организации дорожного движения.

Пространственная скорость оценивает изменение скоростного режима по длине магистрали. Наиболее полно характеризует условия движения на улично-дорожной сети. Однако подобную информацию можно получить только в процессе непрерывной записи скорости с использованием дорожно - исследовательской лаборатории. Достоверность результатов измерений обеспечивается многократным проездом по исследуемой магистрали.

Скорость движения оценивается только с учетом времени движения автомобиля по улично-дорожной сети.

Скорость сообщения определяется с учетом задержек при движении.

На основе данных о скорости транспортного потока можно определить такой удельный показатель, как темп движения - величину, обратную скорости сообщения. Темп движения оценивает время прохождения единицы длины маршрута и предоставляет наглядную информацию об условиях организации движения и перевозок.

В общем виде соотношение между интенсивностью, плотностью и скоростью описывается основным уравнением транспортного потока:

где q- интенсивность движения, k - плотность транспортного потока, v - скорость транспортного потока.

Соответствующие графики приведены на рис. 6.7.

График зависимости между интенсивностью и плотностью обычно называют основной диаграммой транспортного потока. На этом графике прослеживаются основные закономерности изменения состояния транспортного потока. Первая граничная точка соответствует нулевой интенсивности и плотности и характеризует свободные условия движения. Первоначально увеличение плотности вызывает возрастание интенсивности движения, и этот процесс продолжается до достижения пропускной способности дороги. Дальнейшее увеличение плотности приводит к значительному ухудшению условий движения, возникновению заторовых ситуаций, снижению интенсивности движения. Вторая граничная точка соответствует полной остановке движения при максимальной плотности и нулевой интенсивности.

Рис. 6.7. Зависимости между интенсивностью, плотностью и скоростью.

Исходя из основного уравнения транспортного потока, тангенс угла наклона радиус-вектора, проведенного из начала координат основной диаграммы к какой-либо точке графика (в данном случае точка 1), показывает скорость движения при данной интенсивности и плотности.

Задержки движения характеризуются потерей времени при прохождении транспортным средством заданного участка со скоростью сообщения ниже оптимальной:

где v ф;v о - соответственно фактическая и оптимальная скорости сообщения.

Оптимальной скоростью в данном случае следует считать скорость сообщения, обеспечивающую минимум потерь времени, топлива, расходов, связанных с износом автомобиля, потерь от ДТП и т. д. Ввиду трудности определения истинного значения оптимальной скорости в практике организации движения условно в качестве оптимальной принимают разрешенную (расчетную по условию безопасности) скорость на данном участке дороги.

Потери времени транспортного потока

где q - суммарная интенсивность движения.

Различают задержки на перегонах и пересечениях. Задержки на перегонах являются результатом маневрирования, наличия в потоке автомобилей, движущихся с малыми скоростями, движения пешеходов, остановок и стоянок транспортных средств, перенасыщенности потока. Задержки на пересечениях являются результатом необходимости пропуска транспортных и пешеходных потоков по пересекающимся направлениям.

В совокупности все эти зависимости позволяют прогнозировать изменение состояния транспортного потока и пропускной способности при планировании мероприятий по совершенствованию организации дорожного движения и развитию улично-дорожной сети

Из кн. Коноплянко В. И., Гуджоян О. П ., Зырянов В. В., Березин А. С. « Безопасность движения». Учебное пособие. Кемерово 1998 г.

6. 1. КЛАССИФИКАЦИЯ ТЕХНИЧЕСКИХ СРЕДСТВ ОДД

Технические средства организации дорожного движения (ТСОДД) предназначены для регулирования движения транспортных и пешеходных потоков. Регулирование (от латинского regula - норма, правило) ДД – это поддержание на определенном уровне показателей пешеходных и транспортных потоков, с целью обеспечения эффективности и безопасности дорожного движения.

По назначению ТС делятся на:

Средства информирования участников движения (светофоры, дорожные знаки и указатели, дорожная разметка, направляющие устройства);

Устройства, обеспечивающие нормальное функционирование средств информации (контролеры, детекторы, устройства обработки и передачи информации, средства диспетчерской связи, ЭВМ и т. д.);

Рассматривая средства информирования с позиций основного ее пользователя - водителя, можно условно разделить их по формированию знаний и месту получения .

С позиций формирования знаний информация может быть классифицирована следующим образом (рис 6. 1):

Априорная (опытная) профессиональная информация, формирующая знания законов дорожного движения, навыки по управлению транспортным средством и т. п. Ее формирование происходит в процессе обучения и всего последующего профессионального опыта;

Макроинформация, формирующая знания о направлении движения для достижения цели поездки,

Микроинформация, формирующая знания о выборе водителем оперативного режима движения.

По месту получения информация может быть при дорожном и внедорожном движении (см. рис. 6. 1).

Роль внедорожной информации в эффективности и безопасности движения заключается, прежде всего, в создании и повышении уровня априорной информации.

Макроинформация. Узким местом в ОДД в настоящее время является низкое информационное обеспечение участников дорожного движения средствами управления и организации дорожного движения.

Макроинформация формирует знания водителей о направлении движения. Недостаток или полное отсутствие такого вида информации приводит к ряду негативных последствий.

По зарубежным данным, в Великобритании из-за неудовлетворительного размещения дорожных знаков, недостатков дорожного освещения и прочего происходит 28% всех ДТП, перепробег автомобилей, вызванных ошибками водителей при выборе направления движения, составляет 4 - 6, 5% от общего пробега, дополнительные затраты топлива при этом составляют около 1100 млн. литров в год. По предварительным экономическим оценкам разрабатываемая система информирования водителей (ориентирование, сведения о метеорологических условиях, опасных зонах по ходу движения и т. д.) в Великобритании сэкономит около 2 млрд. ф. ст. в год. Таким образом, проблема совершенствования информационного обеспечения дорожного движения представляется актуальной и ее решение позволит существенно снизить суммарные потери автомобильного транспорта.

Макроинформацию, являющуюся управляющей по своей природе, можно разделить на два вида: ориентирование и указание. Появившиеся в последнее время автомобильные навигационные системы относятся к классу информирующих и ориентирующих систем, представляющих собой автоматизированные персональные системы, помогающие конкретным водителям в выборе наиболее оптимального маршрута. Заполнение западного рынка такими системами идет довольно высокими темпами и ожидается, что к 2000 г. уже на 10 млн. автомобилей будут установлены такие навигационные системы.

Прогресс в радиоэлектронике, вычислительной технике и информатике обеспечил достаточно широкое развитие информационно-навигационных систем на автомобильном транспорте. Автомобильные навигационные системы, позаимствовавшие свое название из морской и авиационной терминологии, можно отнести к следующему поколению автоматизированных систем управления движением (АСУД). Их применение позволяет снизить время и стоимость поездки и, кроме того, дает возможность водителю оперативно корректировать свой маршрут.

Подобные системы построены по следующему логическому алгоритму:

1) определение пространственной координаты данного ТС на дорожной сети в данный момент времени;

2) определение маршрута движения ТС от места нахождения до места назначения и доведение этого маршрута до водителя;

3) обеспечение пользователя, находящегося в ТС, возможностью передачи и приема информации с отображением на дисплее (или в другом виде).

Использование навигационных систем должно рассматриваться как ресурсосберегающий фактор на автомобильном транспорте. Эффективность применения таких систем состоит в минимизации прежде всего времени поездки, экономии топлива, снижении уровня загрязнения окружающей среды, амортизационных расходов и уменьшении психофизиологического напряжения водителей.. Распространение автомобильной навигации в массовом масштабе позволит обеспечить оптимальное распределение транспортных потоков по улично-дорожной сети и повысить безопасность движения.

При постоянно возрастающей интенсивности дорожного движения и выпуске моделей автомобилей со все более нарастающими динамическими характеристиками возникает проблема совершенствования систем обеспечения безопасности и снижения экономических потерь дорожного движения Один из возможных путей решения этой проблемы состоит в совершенствовании системы дорожной информации.

В последние годы за рубежом наметилась тенденция к введению в систему информации дорожного движения элементов, предназначенных для передачи участникам дорожного движения сведений, необходимых при планировании и выборе маршрута следования. Иными словами, информации, обеспечивающей ориентирование участников движения.

Водители сейчас имеют широкий доступ к различным источникам информации, которые помогают им достичь пункта назначения кратчайшим и безопаснейшим путем. Диапазон этих средств достаточно велик - от печатных материалов, таких как карты, до сводок о дорожной обстановке, передаваемых по радио. Сюда же относятся и дорожные указатели направлений движения.

До сих пор такие средства помощи большей частью служили лишь дополнительными удобствами для водителей, т. к. было возможно в большинстве случаев добраться до пункта назначения, не прибегая к их помощи. Однако сегодня эта ситуация постоянно меняется в связи с возрастанием числа транспортных средств и увеличением плотности движения. В силу ряда причин, таких как необходимость экономии горючего и времени, информация о дорожной обстановке становится все более актуальной.

Целевой функцией дорожного движения является быстрое, экономичное и безопасное перемещение грузов и пассажиров. Реализация целевой функции возможна при наличии маршрута, соединяющего начальный и конечный пункты поездки. Возможность выбора альтернативных маршрутов подразумевает решение оптимизационной задачи с целью выбора оптимального по заданному критерию маршрута, но недостаточно только рассчитать маршрут, необходимо еще и обеспечить условия его соблюдения, т. к. положительный эффект может быть достигнут только в случае обеспечения движения транспортных средств именно по этим оптимально вычисленным маршрутам. Таким образом, задача указания маршрута движения является логическим завершением поставленной задачи оптимизации.

Отклонение от оптимального маршрута неизбежно приводит к непроизводительным затратам. Зарубежные эксперименты показали, что время, затраченное на передвижение от исходного пункта к заданному при имеющемся информационном обеспечении дорожного движения, может превышать оптимальное более чем в 2 раза, при этом расход топлива на 35%, а пробег автомобилей на 30% и более превышают оптимальное значение (при идеальном маршруте).Причем вероятность отклонения от маршрута увеличивается, если водитель следует по такому пути впервые. В связи с этим, наряду с другими актуальными задачами организации дорожного движения необходимо рассматривать задачу создания системы ориентирования водителей, находящихся на незнакомых маршрутах.

Задачи организации дорожного движения на сегодняшний день усложнились настолько, что эффективное управление им невозможно обеспечить только традиционными элементами системы информации дорожного движения - дорожными знаками и указателями, дорожной разметкой, светофорами и направляющими устройствами. Сказывается, с одной стороны, ограниченность возможности водителя по восприятию дорожной информации ввиду так называемого "дефицита времени", в условиях которого постоянно находится человек, управляющий транспортным средством. С другой стороны, сказываются лимитированные возможности средств информации по видам и, главное, оперативности передаваемой информации.

В условиях усложнения улично-дорожных сетей городов и накладываемой на эти сети системы организации движения для водителя все более необходимой становится возможность получения информации стратегического характера, на основе которой он может оценить и спрогнозировать обстановку на предстоящем пути следования. В этой связи также актуальной становится цель разработки принципов организации системы маршрутного ориентирования и информирования водителей, помогающей им в выборе наиболее оптимального маршрута. Такие системы относятся к классу навигационных систем Их основная цель - минимизация времени и стоимости поездки.

Рис. 6. 1. Классификация средств информации

В настоящее время предпринимаются успешные попытки применения различных методов навигации для использования на автомобильном транспорте. К таким методам относятся:

счислительные (автономные);

радиогониометрические;

инерциальные;

с использованием навигационных маяков;

гиперболические;

разностно-дальномерные.

Последние два метода относятся к спутниковой навигации, в отличие от радиолокационных методов, использующих радиостанции наземного базирования. Классификация методов навигации представлена в виде схемы (рис. 6.2).

Каждый из этих методов имеет свои особенности, вытекающие из сути самих методов.

Рис. 6. 2. Классификация методов навигации

При автономных методах осуществляется определение местоположения (навигация) транспортного средства с учетом счисления пройденного пути и направления движения, исходя из координат известной начальной точки маршрута. Они обеспечивают непрерывную информацию о местоположении объекта, но точность этого указания убывает с увеличением времени движения и пройденного расстояния. Счислительные методы просты и удобны в обслуживании.

Радионавигация определяет местоположение транспортного средства по разности расстояний от него до двух пар синхронно работающих наземных радиостанций. Точность системы определяется вероятностью затухания и отражения радиоволн в пространстве и возможными помехами.

Инерциальная навигация основана на использовании гироскопов и акселерометров. Такие системы не просты в обслуживании из-за необходимости поддержания необходимой частоты вращения гироскопов.

Рис. 6. 3. Схема передачи управляющей информации водителю: Д - датчики данных об условиях дорожного движения; БД - сбор данных об условиях движения; ЦУ - центр управления; УИ - управляющая информация, вырабатываемая; ЦУ, А – автомобили.

В методе, основанном на использовании навигационных маяков, эти так называемые "маяки" являются источниками информации, обеспечивающими водителей сведениями о местоположении их автомобилей. Точность такой системы зависит от того, насколько часто расположены маяки. Работа системы не подвержена систематической погрешности, присущей счислительным системам. К их недостаткам относятся: невозможность определения местоположения вне зоны досягаемости маяка; необходимость наличия маяков на каждом перекрестке; система не обладает свойством непрерывности и не может быть использована в масштабе всей территории страны.

Спутниковая навигация, являющаяся разновидностью радионавигации, отличается теми же недостатками, что и система навигационных маяков (отсутствие непрерывности слежения при отсутствии контакта со спутником), но позволяет охватывать большие территории (в принципе - весь земной шар) и характеризуется постоянством точности определения местоположения транспортного средства на всем маршруте.

Необходимо отметить, что в настоящее время происходит слияние разных методов навигации для создания систем ориентирования, компенсирующих недостатки каждого метода. Тем самым обеспечивается возможность работы системы в различных условиях.

Основными элементами любой навигационной системы являются датчики навигационной информации, навигационный вычислитель и средства отображения и предоставления полученной информации. Все навигационные системы имеют сходную структуру управления, которую можно описать в виде так называемой "петли управления".

Данные об условиях дорожного движения собираются датчика ми, расположенными вдоль дорог, и обрабатываются в центре управления, который рассчитывает путь проезда автомобиля и передает управляющую информацию водителю. Эта информация различными способами передается на приборы, расположенные в автомобиле. Такая схема управления представлена на рис. 6. 3.

Таким образом, получается замкнутая система управления, состоящая из управляемой системы (автомобиля, а точнее, водителя), управляющей системы (центра управления) и цепей управления (каналов связи или воздействия одной системы на другую). В зависимости от уровня сложности системы некоторые элементы могут не входить в ее состав.

Навигационные системы включают в себя системы коллективного и персонального действия. Коллективное действие означает, что одни и те же сообщения получают все водители, независимо от потребности их в этой информации. Системы же индивидуального действия обеспечивают водителю передачу только тех сообщений, которые он запрашивает.

Техническая реализация этих систем основывается на самых разных принципах механических, электронных, космической связи и т. д.

В соответствии с существующими методами навигации на сегодняшний день можно дать следующую классификацию автомобильных навигационных систем по наличию линий связи автономные системы, системы с односторонней связью, системы с двусторонней связью между бортовым навигационным комплексом автомобиля и центром управления По типу используемых в каждой системе данных их можно разделить на два класса Первый класс - системы, работающие на основе фиксированных (постоянных) данных о дорожной сети, условиях движения и т. д. - класс статических систем Второй класс - системы, располагающие периодически изменяющимися данными, - класс динамических систем.

К автономным системам можно отнести маршрутные компьютеры и системы, использующие счислительный метод навигации В системах с односторонней связью можно выделить два подкласса, обусловленных историческим развитием этой разновидности систем информирования водителей - радиомаяки и радиоинформаторы К этому типу систем относятся также системы диспетчерской связи на городском пассажирском транспорте И, наконец, системы с двусторонней связью представляют собой наиболее сложную систему указания маршрутов движения, использующую стационарные вычислительные центры

Классификацию систем информирования и навигации водите лей можно представить в виде табл. 6. 1. Функции систем разных классов представлены в табл. 6 2

Таблица 7.1.

Классификация навигационных систем по типу используемых данных

Статическая

Фиксированные

Наличие каналов связи

автономные

односторонние

двусторонние

Маршрутные компьютеры

Радиомаяки

Динамическая

Переменные

Радиоинформаторы

Системы указания маршрутов

Транспортный поток состоит из отдельных автомобилей, обладающих различными динамическими характеристиками и управляемых разными по квалификации водителями, т. е. он не является однородным.

В условиях малоинтенсивного движения, когда по дороге движутся отдельные транспортные средства с большими интервалами, водителя в выборе режима движения ограничивают Правила движения, состояние автомобиля и дороги. В плотном транспортном потоке водитель не свободен в выборе скорости движения, он не всегда может сделать обгон и его поведение в значительной степени определяется общим ритмом движения на дороге. Следовательно, интенсивный транспортный поток нивелирует различия в характеристике отдельных водителей и машин.

Наблюдения показали, что движение плотного транспортного потока по улице или дороге напоминает движение воды в канале. Если быстро преградить путь потоку воды в канале, то он мгновенно остановится и по поверхности пробежит обратная волна. Такие же "волны" можно наблюдать и в транспортном потоке, остановленном красным сигналом светофора или въездом на узкий участок дороги. Эффект обратной волны применительно к транспортному потоку выражается в резком снижении скорости вдоль колонны и сокращении интервалов между автомобилями.

Хорошо известно, что канал определенного сечения может пропустить вполне определенное количество воды в единицу времени. Если мы хотим пропустить через канал большее количество воды, то должны увеличить его сечение. Нечто подобное происходит и с транспортным потоком, движущимся по своему каналу - улице или дороге. Проезжая часть определенной ширины может пропустить вполне определенное количество автомобилей, и если мы хотим увеличить ее пропускную способность, то должны расширить дорогу.

Эта аналогия дала специалистам основание применить для изучения закономерностей транспортных потоков законы движения жидкости. Такая модель, правда, с определенными ограничениями позволяет проводить важные исследования и решать ряд практических вопросов по регулированию движения.

Транспортный поток можно характеризовать тремя основными параметрами: интенсивностью N (количество автомобилей, проходящих через определенное сечение дороги в единицу времени), средней скоростью V (среднее значение скорости всех автомобилей, прошедших данное сечение за определенный промежуток времени) и плотностью D (количество автомобилей на единицу длины дороги, обычно на 1 км). Эти параметры связаны основным уравнением транспортного потока: N = DV.

Графически это уравнение представляет собой основную диаграмму транспортного потока, общий вид которой показан на рис. 3.

Пользуясь уравнением и диаграммой, можно определять характеристики транспортного потока. Так, средняя скорость пропорциональна тангенсу угла наклона прямой, соединяющей начало координат с точкой, координаты которой характеризуют определенную интенсивность и плотность. Скорость V, как следует из приведенного выше уравнения, равна отношению интенсивности движения (N авт/ч) к соответствующей ей плотности (D авт/км).

Максимально возможная при данных условиях интенсивность движения достигается при определенной плотности транспортного потока (точка А на диаграмме) и называется пропускной способностью полосы движения или дороги в целом. Характерно, что при плотности потока, большей, чем в точке А, интенсивность движения снижается. Объясняется это тем, что при большой плотности движения часто возникают заторы, снижается скорость и это приводит к уменьшению количества автомобилей, проходящих в единицу времени через какое-либо сечение или участок дороги.

Из основной диаграммы и уравнения транспортного потока следует очень важный для регулирования движения вывод: в тех случаях, когда возникает потребность пропустить по дороге максимально возможное количество автомобилей, необходимо установить с помощью знаков определенный режим скорости, который обеспечивает наибольшую интенсивность. Как показывают наблюдения, при благоприятных условиях движения обычная двухполосная дорога с шириной проезжей части 7 - 7,5 м может пропустить не более 2000 автомобилей в час. Максимальная интенсивность достигается при скорости примерно 50 - 60 км/ч * .

* (Сильянов В. В. Теория транспортных потоков в проектировании дорог и организации движения. M., Транспорт, 1978. )

Одной из характеристик движения является свобода обгонов в транспортном потоке. Потребность в обгонах появляется вследствие разнородности состава потока-легковые автомобили и быстроходные грузовые для поддержания желаемой скорости стремятся обогнать медленно движущиеся транспортные средства. С увеличением интенсивности движения потребность в обгонах растет, а возможности для их реализации уменьшаются, поскольку во встречном потоке становится все меньше и меньше интервалов, которые обеспечивают безопасные условия маневра. Наблюдения показывают, что обгон протекает свободно, когда во встречном потоке интервал между автомобилями имеет такую величину, которая может быть преодолена за 20 с и более. Если этот интервал оказывается менее 7 с, то обгон становится практически невозможным. Конечно, отдельные опытные водители, управляя легковым автомобилем с хорошими динамическими качествами, могут совершить обгон и при меньших интервалах, но это сопряжено с большим риском.

В табл. 16 приведены данные, характеризующие возможность совершения обгонов на обычной дороге шириной 7 - 7,5 м при различной интенсивности движения. Как показывают расчеты, при интенсивности движения 100 авт/ч в транспортном потоке 70% всех интервалов больше 20 с, и поэтому обгоны могут происходить сравнительно свободно. При интенсивности 900 авт/ч таких интервалов остается только 4%, и это намного усложняет условия обгона. Наблюдения, проводившиеся Московским автомобильно-дорожным институтом, показывают, что обгоны уже практически не совершаются, когда суммарная интенсивность движения на дороге в обоих направлениях достигает 1500 - 1800 авт/ч. Происходит это из-за уменьшения в транспортном потоке безопасных для обгона интервалов.


Транспортный поток состоит из отдельных автомобилей, обладающих различными динамическими характеристиками и управляемых разными по квалификации водителями, т. е. он не является однородным .

В условиях малоинтенсивного движения, когда по дороге движутся отдельные транспортные средства с большими интервалами, водителя в выборе режима движения ограничивают Правила движения, состояние автомобиля и дороги. В плотном транспортном потоке водитель не свободен в выборе скорости движения, он не всегда может сделать обгон и его поведение в значительной степени определяется общим ритмом движения на дороге. Следовательно, интенсивный транспортный поток нивелирует различия в характеристике отдельных водителей и машин.

Наблюдения показали, что движение плотного транспортного потока по улице или дороге напоминает движение воды в канале . Если быстро преградить путь потоку воды в канале, то он мгновенно остановится и по поверхности пробежит обратная волна.

Эффект обратной волны применительно к транспортному потоку выражается в резком снижении скорости вдоль колонны и сокращении интервалов между автомобилями .

Хорошо известно, что канал определенного сечения может пропустить вполне определенное количество воды в единицу времени. Если мы хотим пропустить через канал большее количество воды, то должны увеличить его сечение. Нечто подобное происходит и с транспортным потоком, движущимся по своему каналу — улице или дороге. Проезжая часть определенной ширины может пропустить вполне определенное количество автомобилей, и если мы хотим увеличить ее пропускную способность, то должны расширить дорогу.

Эта аналогия дала специалистам основание применить для изучения закономерностей транспортных потоков законы движения жидкости. Такая модель, правда, с определенными ограничениями позволяет проводить важные исследования и решать ряд практических вопросов по регулированию движения.

Транспортный поток можно характеризовать тремя основными параметрами : интенсивностью N, средней скоростью V и плотностью D . Эти параметры связаны основным уравнением транспортного потока: N = DV .

Графически это уравнение представляет собой основную диаграмму транспортного потока, общий вид которой показан на рис. 1.


Рис. 1. Основная диаграмма транспортного потока

Пользуясь уравнением и диаграммой, можно определять характеристики транспортного потока. Так, средняя скорость выражается через тангенс угла наклона прямой, соединяющей начало координат с точкой, координаты которой характеризуют определенную интенсивность и плотность (N/D).

Максимально возможная при данных условиях интенсивность движения, как это следует из диаграммы, достигается при определенной плотности транспортного потока (точка A на диаграмме) и называется пропускной способностью полосы движения или дороги в целом. Характерно, что при плотности потока, большей, чем в точке A, интенсивность движения снижается. Объясняется это тем, что при большой плотности движения, часто возникают заторы, снижается скорость и это приводит к уменьшению количества автомобилей, проходящих в единицу времени через какое-либо сечение или участок дороги.

Из основной диаграммы и уравнения транспортного потока следует очень важный для регулирования движения вывод: в тех случаях, когда возникает потребность пропустить по дороге максимально возможное количество автомобилей, необходимо установить с помощью знаков определенный режим скорости, который обеспечивает наибольшую интенсивность .

Как показывают наблюдения, при благоприятных условиях движения обычная двухполосная дорога с шириной проезжей части 7 — 7,5 м может пропустить не более 2000 автомобилей в час. Максимальная интенсивность достигается при скорости примерно 50-60 км/ч. (Лобанов Е.М., Сильянов В.В. и др. Пропускная способность автомобильных дорог).

Одной из характеристик движения является свобода обгонов в транспортном потоке . Потребность в обгонах появляется вследствие разнородности состава потока — легковые автомобили и быстроходные грузовые для поддержания желаемой скорости стремятся обогнать медленно движущиеся транспортные средства. С увеличением интенсивности движения потребность в обгонах растет, а возможности для их реализации уменьшаются , поскольку во встречном потоке становится все меньше и меньше интервалов, которые обеспечивают безопасные условия маневра. Наблюдения показывают, что обгон протекает свободно, когда во встречном потоке интервал между автомобилями имеет такую величину, которая может быть преодолена за 20 с и более. Если этот интервал оказывается менее 7 с, то обгон становится практически невозможным.

Конечно, отдельные опытные водители, управляя легковым автомобилем с хорошими динамическими качествами, могут совершить обгон и при меньших интервалах, но это сопряжено с большим риском.

В табл. 1. приведены данные, характеризующие возможности совершения обгонов на обычной дороге шириной 7 — 7,5 м при различной интенсивности движения. Как показывают расчеты, при интенсивности движения 100 авт/ч в транспортном потоке 70% всех интервалов больше 20 с , и поэтому обгоны могут происходить сравнительно свободно . При интенсивности 900 авт/ч таких интервалов остается только 4%, и это намного усложняет условия обгона . Наблюдения, проводившиеся Московским автомобильно-дорожным институтом, показывают, что обгоны уже практически не совершаются, когда суммарная интенсивность движения на дороге в обоих направлениях достигает 1500- 1800 авт/ч. Происходит это из-за уменьшения в транспортном потоке безопасных для обгона интервалов.

Таблица 1.

Распределение количества интервалов различной длительности в транспортном потоке при различной интенсивности движения

Интенсивность движения на дороге, авт/ч

Количество интервалов, %
До 10 с От 10 с до 20 с

Больше 20 с

8 22 70
44
34 49
44 48
900 53 43

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Транспортный поток

Движение транспортных средств (ТС) по УДС определяется поведением, как одного, так и коллектива водителей. Отдельный водитель, пытаясь достичь собственного оптимального решения, вступает в конфликт с другими, которые взаимодействуют с ним посредством обгонов, перестроения, смены полосы движения и т.д. Такая модель рассматривается в рамках микроскопического подхода. Маневры каждого автомобиля могут быть расценены как вероятностные события.

Однако, в случаях, когда много автомобилей движется в группе, ТП может быть рассмотрен как детерминированный и непрерывный. Применение микроскопических моделей (как и любое увеличение степени детализации описания) влечет за собой увеличение точности описания и числа параметров. Таким образом, с одной стороны, при увеличении степени детализации описания объекта растёт точность модели, а с другой - рост параметров ведёт к уменьшению её точности. При решении многомерных оптимизационных задач управления возрастают ресурсные затраты (время и память), затрудняющие получение приемлемого решения.

2. Основные характеристики и диаграмма транспортного потока

Различают следующие важные характеристики транспортного потока:

Интенсивность транспортного потока, ;

Плотность транспортного потока, ;

Средняя скорость потока, .

Эти параметры связаны следующим основным уравнением:

Различают два вида средней скорости транспортного потока: среднюю пространственную скорость и среднюю временную скорость, которые связаны следующим соотношением, выведенным для случая движения по дороге без пересечений:

где - дисперсия средней пространственной скорости;

Средняя пространственная скорость, т.е. средняя скорость n автомобилей, находящихся на заданном участке дороги в определенный момент времени;

Средняя временная скорость, т.е. средняя скорость n автомобилей, проходящих через заданное сечение дороги за определенный промежуток времени.

Графическое отображение уравнения (1.1), в котором в качестве значения скорости используется, представляет собой основную диаграмму транспортного потока. Диаграмма построена в виде зависимостей v s =f(I ) и I =f(k ) для непрерывного ТП, движущегося по дороге без пересечений.

Выделено три основных режима движения: свободный поток, групповое движение и насыщенный поток.

Свободный поток характеризуется малыми интенсивностями движения, отсутствием взаимных помех движению между отдельными автомобилями. Скорость ТП характеризуется скоростью свободного движения. При небольшой плотности зависимость между скоростью и плотностью ослабляется. С повышением интенсивности движения до максимального значения I с , соответствующего пропускной способности дороги, скорость изменяется до величины, определяемой точкой C на основной диаграмме. В зоне В-С (рис. 1.1. а) появляются существенные взаимные помехи движению автомобилей, в результате чего уменьшается возможность свободного обгона, и образуются группы автомобилей, движущиеся с приблизительно одинаковой скоростью. Режим движения в этой зоне является неустойчивым, поскольку небольшое увеличение групп в потоке может привести не только к уменьшению скорости, но и к переходу в область С-D , т.е. к снижению интенсивности движения. Поток в области D - Е принято называть насыщенным.

Характерной чертой насыщенного коллективного потока является сильный разброс величины ускорений (замедлений) относительно среднего значения.

Рисунок 1.1 - Основная диаграмма транспортного потока: а) зависимость v s =f(I ); б) зависимость I =f(k)

Критическая плотность потока k c - это значение, до которого с увеличением плотности k возрастает интенсивность I . При изменении плотности потока от k c до k J - плотности потока в условиях затора- интенсивность уменьшается от максимального значения пропускной способности I c до нуля. Скорость кинематической волны при заторовой плотности определяется функциональной формой зависимости между скоростью и плотностью. В области критической плотности может существовать точка разрыва функции, что приводит к скачкообразному изменению скорости движения. Тангенс угла наклона вектора, проведенного из начала координат к точке, лежащей на кривой, соответствует физическому значению скорости v s в данной точке (рис. 1.1 б).

Классификация фаз движения ТП основана на различных фазах состояния вещества: газообразное, жидкое, твердое.

Свободный поток. Транспортная сеть не загружена, и водители придерживаются желаемой скорости, свободно меняя полосу движения. На этой стадии ТС сопоставимы с потоком свободных частиц.

Синхронизированный поток. Транспортная сеть становится переполненной, водители теряют возможность свободного манёвра и вынуждены согласовывать свою скорость со скоростью потока. Эта стадия подобна потоку воды.

Широкие перемещающиеся заторы. Транспортные средства и их группы подобны кусочкам льда, движущимся в потоке жидкости.

Старт-стопное движение. При большом скоплении транспортных средств, движение ТП приобретает прерывистый характер. На этой стадии транспортный поток можно уподобить потоку замерзающей воды: транспортные средства становятся на какой-то промежуток времени как бы «примёрзшими» к данной точке улично-дорожной сети.

3. Механизм образования затора

Транспортный затор - это скопление на дороге транспортных средств, движущихся со средней скоростью, значительно меньшей, чем нормальная скорость для данного участка дороги. При образовании затора значительно (до 20 раз и более) снижается пропускная способность участка дороги. Если прибывающий поток транспорта превышает пропускную способность участка дороги, затор растёт лавинообразно. Дорожные заторы появляются по всему миру как результат увеличивающейся автомобилизации, урбанизации, а также как роста населения, так и увеличивающейся плотности заселения территории. Дорожные заторы уменьшают эффективность дорожно-транспортной инфраструктуры, увеличивая таким образом время в пути, расход топлива и уровень загрязнения окружающей среды.

В условиях затора резко возрастает вероятность дорожно-транспортного происшествия (ДТП). Ограничение и регулирование интенсивности движения может влиять на количество ДТП.

Рассмотрим механизм образования затора (рис. 1.2). Пусть на рассматриваемом перегоне длиной находится очередь из единиц транспорта, ожидающих права проезда через перекресток, и работа этого перекрестка обеспечивает пропуск потока от к, т.е. (пропускная способность перекрёстка больше, чем интенсивность прибывающего на него ТП).

Размещено на http://www.allbest.ru/

Рисунок 1.2 - Схема образования затора

Если длина дороги, занимаемая очередью на перегоне, не больше длины перегона, т.е. если то работа перекрестка протекает нормально. Однако, незначительное увеличение интенсивности транспортного потока, либо сбой работы светофорной сигнализации перекрёстка могут привести к ситуации, когда, т.е. когда очередь автомобилей, ожидающих права проезда через перекрёсток, не умещается на перегоне (i , j ) и скапливается в зоне перекрёстка. Это немедленно ведет к нарушению нормального функционирования перекрёстка, на конфликтующих направлениях которого накапливается очередь ТС. Возникает положительная обратная связь по потоку, и затор лавинообразно распространяется на участок сети.

Заторы подразделяются на случайные и систематические, т.е. такие, которые характеризуются периодичностью во времени и устойчивостью в пространстве. Наиболее существенными и определяющими являются заторы, обусловленные пропуском ТС по пересекающимся направлениям, и составляют 75% общей задержки времени в сети.

Часто целью задачи управления при заторах на изолированном перекрёстке считается минимизация задержки ТС за интервал времени существования затора. Установлено, что весь интервал целесообразно разделить на два подынтервала, в каждом из которых управляющие воздействия различны. Оптимальность регулирования движения достигается путём использования циклов и фаз светофорного регулирования разной длительности.

Неустойчивость ТП в области пропускной способности и распространение возмущений в ТП приводят к разрывам в значениях его характеристик. Теоретическое и экспериментальное изучение многими исследователями механизма резкого изменения скорости позволило установить, что при приближении к уровню пропускной способности, увеличивается вероятность резкого снижения интенсивности и скорости движения. При обработке экспериментальных данных об изменении характеристик транспортных потоков в точке k c фиксируется «прыжок» скорости от верхней границы к нижней (рис. 1.3), при этом вероятность резкого падения характеристик ТП возрастает от 10% при интенсивности движения, составляющей 0.75 от максимальной, до 90% при уровне пропускной способности.

Первые предположения о возможности возникновения разрывов в зависимостях между интенсивностью, плотностью и скоростью высказаны Л. Эдаем в 1961 г. Для описания разрывов используются макромодели, имеющие разрыв в точке k c : одна модель - для низкой плотности, другая - для высокой.

Набольшее применение нашли следующие типы разрывных макромоделей:

Флуктуация количества ТС приводит к неустойчивости процесса движения в зоне пропускной способности и возникновению точки бифуркации. В этой связи основным направлением реализации полученных знаний выбрана теория катастроф. Переход от моделей теории катастроф к моделям дорожного движения состоит в изучении потерь устойчивости, определении факторов, влияющих на скачкообразное изменение параметров, интерпретации параметров катастрофы, построение и исследование модели.

4. Управление транспортными потоками

Управление ТП является типичной проблемой, в которой, с одной стороны, выступают присущая ей параллельность, динамика, децентрализация и недетерминизм, а с другой - широта спектра приложений, для которых она является ключевой. Разработка и исследование эффективности различных методов управления ТП требует знания закономерностей поведения ТП на улично-дорожной сети города - интенсивности движения ТП, плотности ТП, распределения интервалов между транспортными средствами в потоке в заданном сечении, времени проезда по некоторому перегону УДС, транспортных задержек и др.

Задачи управления ТП можно решать в рамках функционирования систем управления транспортной инфраструктурой: интеллектуальных транспортных систем (ИТС). Системный подход к решению задач управления транспортной инфраструктурой большого города обеспечивается разработкой и использованием ИТС.

Виды управления транспортными потоками

Методы автоматизированного управления транспортными потоками посредством светофорной сигнализации (светофорного регулирования) на городских УДС допускают классификацию по пространственному и временному критериям.

По пространственному критерию все алгоритмы светофорного регулирования делятся на локальные и координированные.

Алгоритм светофорного регулирования является локальным, если для определения параметров регулирования на перекрёстке используется только информация о ТП на подходах к этому перекрёстку и в зоне перекрёстка.

Перекрёсток это место пересечения, примыкания или разветвления дорог на одном уровне, ограниченное воображаемыми линиями, соединяющими соответственно противоположные, наиболее удаленные от центра перекрёстка начала закруглений проезжих частей. [ПДД

Различают следующие виды перекрёстков:

Равнозначные

Неравнозначные

Регулируемые (управляемые)

Нерегулируемые (неуправляемые)

Перекрёстки с круговым движением

Локальный алгоритм управления предусматривает использование информации, полученной как непосредственно на стоп-линиях, так и на отдаленных подходах к перекрёстку (200 - 400 м от стоп-линии). Локальные алгоритмы определяют цикл регулирования, последовательность фаз регулирования, их длительности или моменты переключения фаз, параметры промежуточных тактов. Для определения перечисленных параметров используется информация о геометрических характеристиках перекрёстка, интенсивности и составе транспортных потоков на подходах к нему и / или на геометрических направлениях проезда через перекрёсток, наличии и / или отсутствии транспорта и пешеходов в различных зонах перекрёстка (на стоп-линиях, в конфликтных точках).

Особенностью координированных алгоритмов является использование для определения параметров регулирования информации о транспортной ситуации на нескольких перекрёстках, обычно связанных в единую сеть, характеризующуюся значительной интенсивностью движения транспорта между соседними перекрёстками и небольшими (до 600-700 м) расстояниями между ними. Как правило, на координированном уровне определяются циклы регулирования для группы перекрёстков и сдвиги. Для определения этих параметров, помимо данных, необходимых для локального управления, используется информация о топологии сети, взаимосвязях ТП на соседних стоп-линиях и / или на геометрических направлениях проезда через перекрёстки, временах проезда между соседними стоп-линиями. В состав исходной информации, используемой для координированного управления, может входить матрица корреспонденций и данные о маршрутах их реализации.

По временному критерию все алгоритмы светофорного регулирования делятся на методы, реализующие управление дорожным движением по прогнозу и методы, действующие в реальном времени (адаптивные алгоритмы). При этом, к адаптивным методам традиционно относятся и алгоритмы, использующие краткосрочный прогноз транспортной ситуации на ближайшие 3 - 15 мин. Управление по прогнозу (или жёсткое управление) не исключает достаточно частого (до 3-5 раз в суточном цикле) изменения параметров регулирования, однако эти параметры определяются исходя не из текущей транспортной ситуации, а методом её прогноза, основанного на выполненных ранее (за сутки, неделю или более длительный период) наблюдениях. Промежуточное положение между адаптивными и неадаптивными алгоритмами занимают методы, основанные на ситуационном управлении. Методы этой группы предполагают предварительный расчёт параметров регулирования для различных классов транспортных ситуаций и создание библиотеки типовых режимов регулирования. Выбор конкретного режима из библиотеки производится в реальном времени на основании текущей информации о транспортной ситуации и отнесении её к одному из классов транспортных ситуаций.

Таким образом, в зависимости от сочетания перечисленных критериев, каждый метод автоматизированного управления ТП в ИТС можно отнести к одному из следующих классов:

Локальные жёсткие алгоритмы управления,

Координированные жёсткие алгоритмы управления,

Локальные адаптивные алгоритмы управления,

Координированные адаптивные алгоритмы управления.

Локальные жёсткие алгоритмы управления

В настоящее время наиболее распространенным является метод локального жёсткого однопрограммного управления светофорной сигнализацией. Данный метод основан на предварительном расчёте длительности цикла регулирования и фаз регулирования. Существуют три подхода к расчёту этих параметров:

Расчёт по эвристическим формулам,

Метод, основанный на минимизации суммарной задержки транспортных средств при проезде перекрёстка,

Метод, основанный на выравнивании загрузки на всех транспортных регулируемых направлениях на перекрёстке.

В качестве исходных данных для расчёта используется информация об интенсивности и составе ТП по направлениям проезда через перекрёсток, информация о количестве полос движения на подходах к перекрёстку и их специализации, а также данные о схеме пофазного регулирования и структуре промежуточных тактов. При расчёте также должны учитываться технологические ограничения, связанные с минимальной и максимальной длительностью фаз. Учёт ограничений на минимальные длительности фаз позволяет обеспечить длительность горения разрешающего сигнала, достаточную для перехода пешеходами проезжей части, проезда зоны перекрёстка трамваями. Учёт ограничений на максимальные длительности фаз позволяет избежать продолжительного горения запрещающего сигнала, ведущего к нарушению правил дорожного движения и снижению безопасности движения. При локальном жёстком однопрограммном регулировании исходные данные, как правило, соответствуют периоду максимальной загрузки перекрёстка.

Управление транспортными потоками в условиях затора

Одной из важнейших функций системы управления дорожным движением ИТС является предотвращение транспортных заторов. По мере своего роста затор не только останавливает движение первоначально вовлеченных в него транспортных потоков, но влияет на потоки на других улицах. Поэтому задачей управления является предупреждение не только возникновения, но и распространения заторов. Проблема управления насыщенными ТП осложняется трудностью локализации заторов в границах их первоначального возникновения.

Затор - особая ситуация на улично-дорожной сети, при которой среднее время задержки D транспортного средства превышает длительность цикла.

Заторы бывают «разовые» (случайные) и систематические (устойчивые). Причиной возникновения разовых заторов являются случайные факторы, например, дорожно-транспортные происшествия, аварийно-восстановительные работы на УДС. Для систематических заторов характерны периодичность во времени и устойчивость в пространстве. Такие заторы возникают на определенных направлениях движения на одних и тех же участках УДС в определенные интервалы времени, чаще всего в часы «пик».

В этой связи задача распознавания, предсказания и ликвидации предзаторовой ситуации, не допуская возникновения затора, является актуальной в управлении транспортными потоками. Решение проецируется на область устранения причин, вызывающих перегрузки «узких» участков УДС, путем перераспределения ТП. Система управления ТП должна своевременно в определенных точках УДС информировать водителей о возможности попадания в затор и рекомендовать какие-либо объездные маршруты следования, позволяющие обойти перегруженный участок сети.

5. Модель распространения затора

Зоны неустойчивости поведения ТП, существующие в области пропускной способности, незатухающие возмущение скорости приводят к разрывам в значениях характеристик ТП. В этих случаях транспортные средства в потоке вынуждены неоднократно трогаться с места и останавливаться. Небольшие изменения интенсивности движения распространяются вдоль потока ТС в виде «кинематических волн», которые могут накладываться друг на друга и вызывать появление «ударных волн», создающих большие перепады скорости в сторону её уменьшения. Ударные волны распространяются против движения и образуются на участках с пониженной пропускной способностью - в «узких» местах.

Будем полагать, что плотности соседних участков и УДС различны, обозначим плотность и скорость движения на участках и соответственно через и, и и. Если - скорость движущейся границы между участками и, то, исходя из закона сохранения, имеем

Решая уравнение относительно, получим

где и - интенсивности движения на участках и соответственно.

Для малых изменений плотности скорость передвижения граничной точки из уравнения (1.4), т.е. .

Для модели Гриншилдса величины и определяют по формулам:

Из уравнения (1.8) следует, что скорость граничной точки при пренебрежимо малом изменении (или) удовлетворяет условиям:

При распространении ударной волны в ТП часть волны будет двигаться назад - в противоположном направлении движения потока, другая часть волны - вперёд, в направлении потока. При образовании ударной волны происходят резкие изменения плотности вплоть до разрыва, автомобили вынуждены замедлять скорость или останавливаться.

В подтверждение метода, учитывающего наличие разрывов, определены три зоны: зона постоянной скорости, зона постоянной интенсивности и зона постоянного изменения интенсивности в зависимости от плотности. В первой зоне скорость ТС определяется состоянием самой УДС, а интенсивность соответствует предъявляемым к УДС требованиям. Вторая зона представляет собой зону, в которой ожидаются «сбои» в режиме движения: средняя скорость падает, в то время как интенсивность можно поддерживать на высоком уровне. В третьей зоне (старт-стопное движение) скорость и интенсивность падают, что само по себе может являться определением затора.

Затор возникает в том случае, когда в транспортной сети на некоторых перегонах образуются очереди, длина которых оказывается больше длины соответствующих перегонов, т.е. . Поэтому управление в вынужденном режиме движения, в первую очередь, должно быть направлено на создание таких условий движения, при которых удовлетворяются ограничения для всех перегонов УДС.

Рассмотрим УДС, содержащую участков, каждый из которых наделен имманентными свойствами: уникальным номером, интенсивностью и др. Будем считать известными параметры УДС, ТП и алгоритмы работы светофорной сигнализации. Анализ снимков интенсивности позволяет заблаговременно выявить зоны, в которых наблюдаются режимы перенасыщенного движения.

Вне области предполагаемых заторов выделим некоторое количество участков, на которых будет измеряться интенсивность движения с дискретностью. Снимок интенсивностей в момент времени в зоне предполагаемого затора позволяет определить значение интенсивности, которое сложится к моменту времени t на дуге графа УДС:

где и - коэффициенты.

Суммирование ведется по всем участкам УДС, не принадлежащим зоне предполагаемых заторов. Для прогнозирования интенсивностей в областях, подверженных заторам, в системе управления необходимо хранить и периодически обновлять значения коэффициентов и, входящих в уравнение регрессии. По вычисленным значениям и при известных режимах работы светофорных объектов несложно вычислить длины очереди транспортных средств на перегонах в момент времени.

Если при прогнозировании по (1.10) окажется, что, это будет означать возможность появления затора на перегоне к моменту времени. Транспортную ситуацию, возникшую в момент времени, назовём предзаторовой.

6. Модель светофорного регулирования

Затор, сконцентрированный в пределах малой зоны, оказывает влияние на другие ТП и, если интенсивность движения превышает пропускную способность, затор распространяется ещё шире. Во избежание подобной катастрофы необходимо рассасывать очереди с целью уменьшения их влияния на другие ТП. Одним из методов рассасывания очередей является распределение ТП путём управления маршрутами движения ТС. Одним из методов борьбы с заторами является управление распределением периодов в цикле, минимизирующее величину интервала существования затора.

Пусть множество транспортных потоков, движущихся по дугам перекрёстка и подходов к нему, прибывает к перекрёстку с интенсивностью по -му направлению движения в течение времени, при этом интенсивность и потоки насыщения соответствуют заторовым. При многофазной работе светофорного объекта, для которого количество фаз регулирования равно, существует множество транспортных потоков, осуществляющих движение во время эффективной разрешающей фазы: , тогда

где - потерянное время -го потока, - ограничительные константы.

Задачу нахождения управляющих параметров: светофорного цикла и фаз, минимизирующих величину интервала существования затора, можно записать как

транспортный затор поток светофорный

где Ї интенсивность потока при, при.

Задачу минимизации суммарной длительности задержки транспортных средств на перекрёстке за время существования затора можно решать как:

Решения сформулированных задач находятся численными методами.

6. Интеллектуальные транспортные системы

Термин «Интеллектуальные транспортные системы» характеризует комплекс интегрированных средств управления транспортной инфраструктурой (УДС, ТСОДД, ТП), применяемых для решения задач организации дорожного движения, на основе современных информационных технологий, организации информационных потоков о функционировании транспортной инфраструктуры в реальном режиме времени. Многоуровневая, сложноорганизованная ИТС представляет собой гибридную систему, состоящую из множества разнородных систем, сложным образом взаимодействующих друг с другом - управляющих, классифицирующих, прогнозирующих, экспертных, принимающих решения или поддерживающих эти процессы, объединенных для достижения единой цели.

Приоритетным направлением развития интеллектуальных транспортных систем является обеспечение безопасности дорожного движения. К функциям ИТС этого вида относятся: прогнозирование опасных ситуаций, выявление заторов и дорожно-транспортных происшествий, разработка планов действий в опасных ситуациях, информирование участников движения о возникновении нештатных ситуаций. Преимуществом ИТС при работе в этих условиях является возможность интеграции всех источников информации.

Задачи интеллектуальных транспортных систем

Классификация задач, решаемых в рамках функционирования транспортной инфраструктуры, позволит определить стратегию и тактику синтеза интеллектуальных транспортных систем.

1. Задачи мониторинга

1.1. Мониторинг транспортных потоков:

- мониторинг характеристик ТП (скорость, интенсивность, пло тность и др.);

Сбор данных об условиях движения с помощью контрольных автомобилей;

Управление движением на скоростных дорогах.

1.2. Мониторинг характеристик улично-дорожной сети:

- паспортизация УДС, многоуровневых транспортных развязок и тоннелей;

Паспортизация надземных и подземных пешеходных переходов;

Паспортизация железнодорожных переездов;

Оценка текущего состояния УДС;

Мониторинг аварийно-восстановительных работ на УДС;

1.3. Мониторинг технических средств управления движением

- реестр дорожных знаков;

Реестр светофорных объектов;

Реестр дорожной разметки;

Магистральное и сетевое управление светофорной сигнализацией;

Автоматическая электронная плата за проезд и парковку;

1.4. Мониторинг загрязнения окружающей среды

2. Задачи управления.

2.1. Управление транспортными потоками

- координированное управление транспортными потоками;

Оценка качества функционирования транспортной сети;

Управление движением в чрезвычайных ситуациях;

Обнаружение дорожно-транспортных происшествий;

Мониторинг заторовых ситуаций для оценки динамики их развития;

Разработка стратегии управления дорожным движением в условиях заторовой ситуации;

Интеграция систем управления дорожным движением;

2.2. Управление перевозочным процессом

- обеспечение дотранспортной информацией, информирование клиентов о маршрутной сети, планирование поездок;

Бронирование транспортных услуг;

Оценка спроса на перевозки;

Маршрутное ориентирование, on-line мониторинг прохождения маршрута;

Выработка стратегии управления в конкретных ситуациях;

Оперативное изменение схем организации дорожного движения;

Управление приоритетным движением маршрутного транспорта;

Маршрутная навигация и предоставление приоритета специальным одиночным и колоннам транспортных средств (ТС);

Мониторинг перевозки опасных и крупногабаритных грузов;

Оптимизация маршрутной сети;

Интеграция систем управления перевозками;

3. Задачи информационного обеспечения участников движения:

- передача информации по каналам связи;

Сегментация информационных потоков;

Интеграция систем управления базами данных о дорожном движении.

Размещено на Allbest.ru

...

Подобные документы

    Определение необходимости корректировки существующей модели управления и внедрения новых управляющих воздействий и установки дополнительных технических средств организации дорожного движения. Разработка оптимальной модели управления дорожным движением.

    дипломная работа , добавлен 16.05.2013

    Основы развития, сущность и задачи транспортной логистики. Сравнительные характеристики разных типов транспорта. Анализ видов транспортировки: плюсы и минусы. Критерии выбора перевозчика. Направления совершенствования управления транспортными потоками.

    презентация , добавлен 12.12.2011

    Развитие инфраструктуры внешнего транспорта г. Уфы. Пути решения его проблем. Улично-дорожная сеть. Развитие трамвайной и троллейбусной сети города. Общая характеристика и программно-аппаратный комплекс интеллектуальной транспортной системы региона.

    курсовая работа , добавлен 18.09.2013

    Анализ экономической сущности, задач и функций транспортной логистики - управления транспортировкой грузов, изменением местоположения материальных ценностей с использованием транспортных средств. Процесс управления транспортными потоками на РУПП "Ольса".

    курсовая работа , добавлен 10.03.2011

    Управление транспортными потоками в мегаполисе. Характеристика дорожного движения по автомобильным дорогам. Интенсивность движения транспортных потоков по направлениям. Светофорное регулирование. Обеспечение безопасности человека в городской среде.

    дипломная работа , добавлен 23.05.2015

    Изучение различных виды грузов, обладающих разными транспортными характеристиками. Определение типа упаковки и нанесение маркировки по каждому виду. Выявление наиболее оптимального способа перевозки на основе транспортных характеристик данных грузов.

    контрольная работа , добавлен 03.12.2010

    Нормативы пропускной способности зоны взлета и посадки. Расчет минимальных временных интервалов занятости ВПП при выполнении взлетно-посадочных операций. Определение позиций и методика управления потоками взлетающих и поступающих в ЗВП воздушных суден.

    курсовая работа , добавлен 15.12.2013

    Применение методов статистической обработки данных о распределении интервалов между автомобилями в транспортном потоке на перекрёстке. Характеристика и оценка безопасности дорожного движения на участке дороги. Вид вероятностного распределения интервалов.

    курсовая работа , добавлен 11.01.2013

    Анализ условий и организации движения на объекте улично-дорожной сети, интенсивности и состава транспортного потока. Расчет задержек подвижного состава на перекрестке, выбор типа светофорного регулирования, обоснование эффективности его введения.

    курсовая работа , добавлен 27.07.2012

    Состояние и проблемы Новосибирского транспортного узла. Основные внешнеэкономические связи области, концепция развития таможенной инфраструктуры. Перспективы развития взаимосвязей Новосибирского транспортного узла с другими транспортными узлами.

Транспортные потоки - это часть материальных потоков между производителями и потребителями. Они характеризуются объемом, направлением и дальностью. Мощность потока измеряется объемом груза, транспортируемым в единицу времени.

Динамической характеристикой потока служит коэффициент неравномерности - отношение максимального объема перевозок к среднему объему за рассматриваемый период.

Пробеги грузов обычно характеризуются средней дальностью перевозок, которая определяется как частное от деления грузооборота (т км) на объем отправления (т).

Отношение объема перевозок продукции к размерам ее производства называется коэффициентом перевозимости. Определяется применительно к транспортной системе в целом.

В качестве параметров регулирования транспортных потоков выступают: скорость перемещений и скорость доставки грузов, масса отправки, интервал отправления грузов.

Используемый транспорт для перемещения товаров

Транспортные средства служат для обеспечения материальных потоков между производителями и потребителями. Выступают в качестве катализатора экономики, обеспечивая высокий уровень ее активности.

Транспорт использует четыре основных компонента: пути, терминалы, подвижный состав и тяговые средства.

Путь представляет собой среду, по которой происходит движение. Пути бывают естественные (моря, реки, воздушное пространство) и искусственные (автомобильные и железные дороги, каналы и т.д.).

Терминал - это пункт, где кончается одна транспортная сеть и начинается другая. Терминал выполняет три функции: обеспечивает доступ к подвижному составу; обеспечивает легкую смену подвижного состава, работающего на данном пути; облегчает объединение (разъединение) потоков.

Тяговые средства приводят в движение подвижной состав.

В транспортной логистике объектом управления является подвижной состав, находящийся в каждый данный момент времени в состоянии абсолютного или относительного перемещения.

Различают следующие виды транспортных средств: железнодорожный, автомобильный, морской, речной, воздушный, трубопроводный, внутризаводской, внутрицеховый.

Железнодорожный транспорт - самый крупный грузоперевозчик страны. На его долю приходится более одной трети всего грузооборота страны. Железнодорожные перевозки наиболее рентабельны для таких грузов, которые можно перевозить в вагонах навалом (уголь, руда, песок, сельскохозяйственная и лесная продукция). Рентабельно перевозить автомобили и прицепы на специальных платформах. Железные дороги могут предоставлять и такие услуги как переадресование уже отгруженных товаров в другой пункт назначения прямо на маршруте, обработка товаров в ходе перевозки.

Автомобильный транспорт осуществляет в городах и между ними на небольших расстояниях основную массу грузовых перевозок. С помощью автомобильного транспорта груз может доставляться “от двери до двери” с необходимой степенью срочности, обеспечивается регулярность поставки. Основными недостатками этого вида транспорта являются: сравнительно высокая себестоимость перевозок, плата за которые взимается по максимальной грузоподъемности автомобиля; срочность разгрузки; возможность хищения груза и угона автотранспорта; сравнительно малая грузоподъемность.

Морской транспорт - самый крупный перевозчик в международных перевозках. Основные преимущества - низкие грузовые тарифы и высокая провозная способность. К недостаткам относят его низкую скорость, жесткие требования к упаковке и креплению грузов, малую частоту отправок.

Речным транспортом по внутренним водным путям перевозится значительное количество товаров в навигационный период. Особенно это актуально для мест назначения, куда не проложены железнодорожные пути из-за специфических климатических условий и для тех, которые расположены на берегах крупных рек. Стоимость перевозки по воде громоздких не скоропортящихся товаров невысокой стоимости (песок, уголь, зерно, нефть, руда) невелика по сравнению с железнодорожными перевозками. Недостатки заключаются в том, что водный транспорт самый тихоходный и подвержен влиянию климатических условий.

Воздушный транспорт имеет высокую скорость и может обслуживать отдаленные, недоступные для других видов транспорта районы. К недостаткам относят высокие грузовые тарифы и зависимость от метеоусловий, которые снижают надежность соблюдения графика поставки.

Трубопроводы служат для транспортировки нефти и химических продуктов от мест их происхождения к рынкам. Транспортировка по нефте- и газопроводам обходится дешевле, чем по железной дороге, и несколько дороже, чем водным путем.

Последние материалы раздела:

Смотреть что такое
Смотреть что такое "душевный мир" в других словарях

Энциклопедический словарь 1. МИР, а; мн. миры, ов; м. 1. Совокупность всех форм материи в земном и космическом пространстве; Вселенная....

Наталья СтепановаМолитвенный щит
Наталья СтепановаМолитвенный щит

Все дело в том, дорогие мои, что Господь Бог наделил меня искренней любовью к людям. Этому меня учила и моя бабушка. Если говорить совсем кратко,...

Сонник: к чему снится Лошадь
Сонник: к чему снится Лошадь

Во сне дано не каждому, ведь это сильное, свободолюбивое животное может запросто скинуть своего наездника. Сон, в котором сновидец скачет на...