Параметры диагностирования состояния тормозов. Тормозные системы и их диагностирование Методы диагностики тормозных систем

Согласно действующим стандартам применяют два основных метода диагностирования тормозных систем - дорожный и стендовый. Для них установлены следующие контролируемые параметры:

  • при проведении дорожных испытаний - тормозной путь; установившееся замедление; устойчивость при торможении; время срабатывания тормозной системы; уклон дороги, на котором должно неподвижно удерживаться транспортное средство
  • при проведении стендовых испытаний - общая удельная тормозная сила; коэффициент неравномерности (относительная неравномерность) тормозных сил колес оси, а для автопоезда еще дополнительно коэффициент совместимости звеньев автопоезда и асинхронность времени срабатывания тормозного привода

Существует несколько видов стендов и приборов, использующих различные методы и способы измерения тормозных качеств:

  • статические силовые
  • инерционные платформенные
  • инерционные роликовые
  • силовые роликовые стенды
  • приборы для измерения замедления автомобиля при дорожных испытаниях

Статические силовые стенды

Статические силовые стенды для диагностирования тормозов автомобиля представляют собой роликовые или платформенные устройства, предназначенные для проворачивания «срыва» заторможенного колеса и измерения прикладываемой при этом силы. Такие стенды могут иметь гидравлический, пневматический или механический привод. Измерение тормозной силы возможно при вывешенном колесе или при его опоре на гладкие беговые барабаны. Недостатком статического способа диагностирования тормозов является неточность результатов, вследствие чего не воспроизводятся условия реального динамического процесса торможения.

Инерционные платформенные стенды

Принцип действия инерционного платформенного стенда основан на измерении сил инерции (от поступательно и вращательно движущихся масс), возникающих при торможении автомобиля и приложенных в местах контакта колес с динамометрическими платформами. Такие стенды иногда используются на предприятиях автотехобслуживания для входного контроля тормозных систем или экспресс-диагностирования транспортных средств.

Инерционные роликовые стенды

Инерционные роликовые стенды имеют ролики, которые могут иметь привод от электродвигателя или от двигателя автомобиля. В последнем случае ведущие колеса автомобиля приводят во вращение ролики стенда, а от них с помощью механической передачи - и передние (ведомые) колеса.

После установки автомобиля на инерционный стенд линейную скорость колес доводят до 50…70 км/ч и резко тормозят, одновременно разобщая все каретки стенда путем выключения электромагнитных муфт. При этом в местах контакта колес с роликами (лентами) стенда возникают силы инерции, противодействующие тормозным силам. Через некоторое время вращение барабанов стенда и колес автомобиля прекращается. Пути, пройденные каждым колесом автомобиля за это время (или угловое замедление барабана), будут эквивалентны тормозным путям и тормозным силам.

Тормозной путь определяют по частоте вращения роликов стенда, фиксируемой счетчиком, или по продолжительности их вращения, измеряемой секундомером, а замедление - угловым деселерометром.

Метод, реализуемый инерционным роликовым стендом, создает условия торможения автомобиля, максимально приближенные к реальным. Но в силу высокой стоимости стенда, недостаточной безопасности, трудоемкости и больших затрат времени, необходимого для диагностирования, стенды такого типа нерационально использовать при проведении диагностирования на автопредприятиях и при гостехосмотре.

Силовые роликовые стенды

Силовые роликовые стенды с использованием сил сцепления колеса с роликом позволяют измерять тормозные силы в процессе его вращения со скоростью 2.10 км/ч. Вращение колес осуществляется роликами стенда от электродвигателя. Тормозные силы определяют по реактивному моменту, возникающему на статоре мотор-редуктра стенда при торможении колес.

Роликовые тормозные стенды позволяют получать достаточно точные результаты проверки тормозных систем. При каждом повторении испытания они способны создать условия (прежде всего скорость вращения колес), абсолютно одинаковые с предыдущими, что обеспечивается точным заданием начальной скорости торможения внешним приводом. Кроме того, при испытании на силовых роликовых тормозных стендах предусмотрено измерение так называемой «овальности» - оценка неравномерности тормозных сил за один оборот колеса, т.е. исследуется вся поверхность торможения.

При испытании на роликовых тормозных стендах, когда усилие передается извне (от тормозного стенда), физическая картина торможения не нарушается. Тормозная система должна поглотить поступающую извне энергию даже несмотря на то, что автомобиль не обладает кинетической энергией.

Есть еще одно важное условие - безопасность испытаний. Самые безопасные испытания - на силовых роликовых тормозных стендах, поскольку кинетическая энергия испытуемого автомобиля на стенде равна нулю. В случае отказа тормозной системы при дорожных испытаниях или на площадочных тормозных стендах вероятность аварийной ситуации очень высока.

Следует отметить, что по совокупности своих свойств именно силовые роликовые стенды являются наиболее оптимальным решением как для диагностических линий станций техобслуживания, так и для диагностических станций, проводящих гостехосмотр.

Современные силовые роликовые стенды для проверки тормозных систем могут определять следующие параметры:

  • по общим параметрам транспортного средства и состоянию тормозной системы - сопротивление вращению незаторможенных колес; неравномерность тормозной силы за один оборот колеса; массу, приходящуюся на колесо; массу, приходящуюся на ось
  • по рабочей и стояночной тормозным системам - наибольшую тормозную силу; время срабатывания тормозной системы; коэффициент неравномерности (относительную неравномерность) тормозных сил колес оси; удельную тормозную силу; усилие на органе управления

Данные контроля выводятся на дисплей в виде цифровой или графической информации. Результаты диагностирования могут выводиться на печать и храниться в памяти компьютера в базе данных диагностируемых автомобилей.

Рис. Данные контроля тормозной системы автомобиля: 1 - индикация проверяемой оси; ПО - рабочий тормоз передней оси; СТ - стояночная тормозная система; ЗО - рабочий тормоз задней оси

Результаты проверки тормозных систем могут выводиться также на приборную стойку.

Динамику процесса торможения можно наблюдать в графической интерпретации. График показывает тормозные силы (по вертикали) относительно усилия на педали тормоза (по горизонтали). На нем отражены зависимости тормозных сил от усилия нажатия на педаль тормоза как для левого колеса (верхняя кривая), так и для правого (нижняя кривая).

Рис. Приборная стойка тормозного стенда

Рис. Графическое отображение динамики процесса торможения

С помощью графической информации можно наблюдать также разницу в тормозных силах левого и правого колес. На графике показано соотношение тормозных сил левого и правого колес. Кривая торможения не должна выходить за границы нормативного коридора, которые зависят от конкретных нормативных требований. Наблюдая характер изменения графика, оператор-диагност может сделать заключение о состоянии тормозной системы.

Рис. Значения тормозных сил левого и правого колес

Методы и средства диагностирования тормозных систем разрабатываются применительно к диагностическим параметрам и требованиям технологических процессов технического обслуживания и ремонта автомобиля. Соответственно этому существуют средства для общего диагностирования тормозов в дорожных условиях, для общего стационарного диагностирования перед обслуживанием или ремонтом, для поэлементного диагностирования в процессе технического обслуживания и ремонта или же после их выполнения.

Существующие средства технической диагностики тормозов (СТДТ) могут быть классифицированы по пяти признакам:

1. по использованию сил сцепления колеса с опорной поверхностью;

2. по месту установки;

3. по способу нагружения;

4. по режиму движения колеса;

5. по конструкции опорного устройства.

Рис. 2.1. Средства технического диагностирования тормозов.

2.1. Стенды технической диагностики тормозов автомобиля.

Все стенды технического диагностирования тормозов (СТДТ) подразделяют на две большие группы. Первая, к которой относят основную часть стендов, является более многочисленной. Эта группа СТДТ работает с использованием сил сцепления колеса с опорной поверхностью. В данных стендах реализуемый тормозной момент ограничен силой сцепления колеса с опорной поверхностью стенда, поэтому в большинстве из них невозможно реализовать полный тормозной момент автомобиля. Вторая группа стендов, работающих без использования сил сцепления колеса с опорной поверхностью, конструктивно отличается тем, что тормозной момент передается непосредственно через колесо или через ступицу. Эта группа стендов не нашла широкого применения из-за сложности конструкции и нетехнологичности проведения испытаний.

Стенды, в свою очередь, по способу нагружения бывают силовые и инерционные. Силовые стенды первой группы по режиму движения колеса на стенде могут быть: с частичным проворачиванием колеса и с полным проворачиванием колеса. Первый режим, как правило, характерен для платформенных стендов, а второй – для всех остальных стендов.

По конструкции опорных устройств стенды подразделяются на: площадочные, роликовые и ленточные (первая группа); с вывешиванием осей колес и без вывешивания осей колес (вторая группа).

В силовых платформенных стендах колеса автомобиля неподвижны, поэтому при нажатии на тормозную педаль изменяется лишь усилие сдвига (срыва) заблокированных колес с места, т.е. сила трения между тормозными накладками и барабаном (диском). Существуют стенды с одной общей площадкой под все колеса и с площадками под каждое колесо автомобиля.

Силовые платформенные стенды обладают целым рядом существенных недостатков, исключающих их широкое применение. Например, при испытании не учитываются влияние скорости движения на коэффициент трения скольжения и динамические воздействия в тормозной системе. Результаты измерений во многом зависят от положения колес на площадке стенда, от состояния опорной поверхности и протекторов колес. Измеряется лишь усилие страгивания с места заторможенных колес.


Платформенные инерционные стенды , имеющие подвижные (одну общую на каждую сторону или под каждое колесо) площадки, по сравнению с силовыми платформенными стендами более совершенны, т. к. более полно учитывают динамику действия тормозных сил в реальных условиях. Однако эти стенды обладают рядом существенных недостатков: потребность в территории для разгона автомобиля, снижение уровня безопасности работ при диагностировании, не достаточна точность и достоверность диагностической информации.

Инерционные нагрузочные ленточные стенды воспроизводят дорожные условия взаимодействия шины с опорными поверхностями. Однако они имеют значительные габариты и не обеспечивают достаточную устойчивость автомобиля при диагностировании, а такие конструктивные недостатки, как проскальзывание ленты и большие механические потери в парах трения.

Роликовые тормозные стенды . Из их числа в преобладающем большинстве используют стенды, основанные на силовом методе диагностирования. Силовой метод позволяет определить тормозные силы каждого колеса при задаваемом усилии нажатия на педаль, время срабатывания тормозного привода, оценивать состояние рабочих поверхностей тормозных накладок и барабана, эллипсность барабанов и т.п. В подавляющем большинстве этих стендов при принудительном прокручивании заторможенных колес автомобиля имитируется скорость движения 2-5 км/ч, редко до 10км/ч,

Наиболее достоверным является инерционный метод диагностирования на роликовых инерционных стендах. На них измеряют тормозной путь по каждому отдельному колесу, время срабатывания тормозного привода и замедление (максимальное и по каждому колесу в отдельности), но из-за сложности, высокой стоимости и более низкой технологичности в эксплуатации эти стенды применяют крайне ограниченно.

Для диагностирования тормозов в стесненных условиях, а также с целью локализации неисправностей и углубленного диагностирования наиболее эффективны переносные СТДТ. Суть метода работы этих устройств заключается в том, что колесо автомобиля принудительно раскручивают, и когда скорость вращения достигает заданного значения, срабатывает устройство нажатия на тормозную педаль; происходит торможение колеса, в процессе которого регистрируется время срабатывания тормозного привода, время нарастания замедления в заданном интервале частот вращения колеса и тормозной путь при установившемся значении тормозной силы.

В связи с малой инерционной массой вывешенных колес процесс торможения существенно отличается от реального. Приведение результатов диагностирования тормозов к реальным условиям осуществляют через переводные коэффициенты для тормозного пути и замедления.

Общее диагностирование автомобиля в дорожных условиях осуществляют следующими методами; визуально по тормозному пути и синхронности начала торможения всеми колесами; при помощи переносных приборов; по максимальному замедлению автомобиля; при помощи встроенных приборов; по автоматической сигнализации о достижении диагностическим параметром предельной величины.

Диагностирование по тормозному пути на динамометрической дороге заключается в наблюдении за автомобилем при резком однократном нажатии на педаль (сцепление выключено) и измерении тормозного пути. Одновременно наблюдают за синхронностью торможения по следам шин, оставленным на дороге. Испытательный участок должен быть ровным, сухим и горизонтальным. Нормативный тормозной путь (при скорости перед торможением, равной 30км/ч) составляет для легковых автомобилей не менее 7,2м, а для грузовых и автобусов в зависимости от грузоподъемности 9,5-11м. Этот способ не дает достоверных результатов, а пользование им затруднено в связи с необходимостью иметь достаточно большой участок горизонтальной дороги с твердым, сухим и ровным покрытием.

Диагностирование тормозов по замедлению автомобилей при помощи переносных приборов- деселерометров осуществляется также на ровном горизонтальном участке дороги. Автомобиль разгоняют до скорости 10-20км/ч и резко тормозят однократным нажатием на педаль при выключенном сцеплении. При этом измеряют Ј max . Нормативное замедление (оно не зависит от скорости автомобиля) для легковых автомобилей составляет не менее 5,8м/с 2 , а для грузовых в зависимости от грузоподъемности – от 5,0 до 4,2м/с 2 . Для ручных тормозов замедление должно быть в пределах 1,5- 2,5м/c 2 .

Рис. 2.2. Принципиальная схема деселерометра с поступательно движущейся массой.

1 – инерционная масса;
2 – сигнальная лампа;
3 – пластинчатая пружина;
4- регулировочный винт;
5 – батарея.

Принцип работы деселерометра заключается в фиксации пути перемещения подвижной инерционной массы прибора относительно его корпуса, неподвижно закрепленного на автомобиле. Это перемещение происходит под действием силы инерции, возникающей при торможении автомобиля и пропорциональной его замедлению. Инерционной массой деселерометра может служить поступательно движущийся груз, маятник, жидкость или датчик ускорения, а измерителем- стрелочное устройство, шкала, сигнальная лампа, самописец, компостер и др. Для обеспечения устойчивости показаний деселерометр снабжают демпфером (жидкостным, воздушным, пружинным), а для удобства измерений – механизмом фиксирующим максимальное замедление.

Для диагностирования тормозов автомобилей при помощи конструктивно встроенных приспособлений, применяют системы, обеспечивающие информацию об изношенности тормозных колодок, уровне тормозной жидкости, о давлении в пневмо – или гидроприводе, работе ручного тормоза, неисправности противоблокировочного устройства и др.

Система состоит из встроенных датчиков и щитковых указателей или аварийных сигнализаторов. Встроенное диагностирование обеспечивает возможность непрерывного слежения за состоянием тормозов. С этой точки зрения оно идеально. Ограниченность применения встроенного диагностирования обусловлена значительной его стоимостью. Развитие современного приборостроения и электроники позволяет ожидать быстрого развития средств встроенного диагностирования современных автомобилей.

Общее стационарное экспресс- диагностирование выполняют на специализированных постах и линиях, применяя быстродействующие платформенные стенды инерционного или силового типа. Для общего диагностирования с регулировочными работами применяют также и тормозные стенды роликового типа.

Принцип действия инерционного платформенного стенда основан на измерении сил инерции (от поступательно и вращательно движущихся масс автомобиля), возникающих при его торможении и приложенных в местах контакта колес с динамометрическими платформами.

Платформенный инерционный стенд состоит из четырех подвижных платформ с рифленой поверхностью, на которые автомобиль наезжает колесами со скоростью 6-12км/ч и останавливается при резком торможении. Возникающие при этом силы инерции автомобиля соответствуют тормозным силам. Они воздействуют на платформы стенда, воспринимаются жидкостными, механическими или электронными датчиками и фиксируются измерительными приборами, расположенными на пульте.

К недостаткам стендов платформенного инерционного типа относятся: большая занимаемая ими производственная площадь (с учетом необходимости предварительного разгона автомобиля); нестабильность коэффициента сцепления шин, зависящая от их загрязненности, влажности и температуры.

Платформенный тормозной стенд силового типа по принципу действия отличается от инерционного тем, что тормозные силы, возникающие при торможении в местах контакта колес с динамометрическими платформами, получаются не вследствие инерции автомобиля, а в результате его принудительного перемещения через платформы при помощи тягового конвейера.

Для поэлементного диагностирования на постах и линиях технического обслуживания и ремонта автомобилей применяют инерционные стенды с беговыми барабанами и силовые стенды с роликами. Они подразделяются два класса: с использованием для прокручивания заторможенных колес сил сцепления и без использования этих сил.

В первом случае заторможенное колесо проворачивают при помощи сил сцепления, возникающих в местах контакта колеса с барабаном (роликом), к которому приложен инерционный крутящий момент или момент электродвигателя непосредственно к колесу автомобиля. В практике диагностирования автомобилей в основном применяют стенды первого типа, так как они дешевле и технологичней.

Инерционные стенды с беговым или ленточным опорно-приводным устройством с использованием сил сцепления могут быть с приводом от колес работающего автомобиля или с приводом от электродвигателей. Стенд с приводом от колес автомобиля состоит из двух опорно-приводных агрегатов, кинематически связанных между собой и обеспечивающих одновременную проверку тормозов обеих осей автомобиля. Каждый опорно-приводной агрегат барабанного стенда состоит из рамы и двух пар беговых барабанов, на которые опираются колеса автомобиля. Беговые барабаны связаны с маховыми массами.

Стенд с электроприводом состоит из одного агрегата и как правило предназначен для поочередной проверки тормозов автомобилей с двумя ведущими осями опорно-приводной агрегат снабжают дополнительными опорными барабанами.

Принцип работы всех инерционных стендов с использованием сил сцепления одинаков. Если стенд имеет электропривод, то колеса автомобиля приводятся во вращение от роликов стенда, а если не имеет, то от автомобильного двигателя. В последнем случае ведущие колеса автомобиля приводят во вращение ролики стенда, а от них при помощи механической передачи и передние, ведомые, колеса.

После установки автомобиля на инерционный стенд доводят окружную скорость колес до 50-70км/ч и резко тормозят, одновременно разобщая все каретки стенда путем выключения электромагнитных муфт (заданная сила нажатия на педаль тормоза обеспечивается автоматом или месдозой с указателем, устанавливаемой на педаль тормоза). При этом в местах контакта колес с роликами стенда возникают силы инерции, противодействующие тормозным силам. Через некоторое время вращение барабанов стенда и колес автомобиля прекращается. Пути, пройденные каждым колесом автомобиля за это время, или угловое замедление барабана будут эквивалентны их тормозным путям и тормозным силам.

Тормозной путь определяют по частоте вращения роликов стенда, фиксируемой счетчиком, или по продолжительности их вращения, измеряемой секундомером, а замедление - угловым деселерометром. На инерционном стенде возможно и прямое измерение тормозного момента по величине реактивного крутящего момента, возникающего на валу стенда между маховиком барабаном. Для достоверности полученных результатов необходимо, чтобы условия торможения колес автомобиля на стенде соответствовали реальным условиям торможения автомобиля на дороге. Это означает, что поглощаемая тормозами автомобиля кинетическая энергия при их испытании на стенде должна быть такой же, как и на дороге.

Силовые стенды с использованием сил сцепления колеса позволяют измерять тормозные силы в процессе его вращения с некоторой скоростью V=2…10км/ч. При этом тормозную силу каждого из колес автомобиля, установленного на стенде, измеряют, затормаживая их в процессе вращения. Вращение колес осуществляется роликами стенда от электродвигателя. Тормозные силы определяют по величине крутящего момента, возникающего на роликах при торможении колес.

При диагностировании тормозов с гидравлическим приводом этим методом определяют зависимость измерения тормозной силы Рт на каждом из колес автомобиля от силы давления на педаль тормоза Рн. Эта зависимость, называемая тормозной диаграммой, дает достаточно полную характеристику работоспособности тормозной системы. При силовом методе диагностирования тормозов общим параметром эффективности является удельная тормозная сила ∑Р т /G a ·100%. Для большинства автомобилей эта сила равна 45-80%, последняя цифра является показателем отличного состояния тормозов. Разность тормозных сил на колесах одной оси автомобиля, обеспечивающая отсутствие заноса, не должна быть больше 10-15%.

Диагностирование тормозов при помощи силовых стендов наиболее распространено. Это объясняется большой приспособленностью силовых стендов к поэлементному диагностированию при совмещении диагностических работ с регулировочными, относительно небольшой их стоимостью, малой занимаемой или производственной площадью и экономичным расходом электроэнергии.

Несомненным преимуществом инерционных тормозных стендов является возможность диагностирования тормозов на высоких скоростях движения. Именно этот фактор является основополагающим для испытания тормозных систем с АБС, т.к. эта система начинает свою работу со скорости примерно в 20…30км/ч.

Диагностирование позволяет оценить техническое состояние автомобиля в целом и отдельных его агрегатов и узлов без разборки, выявить неисправности, для устранения которых необходимы регулировочные или ремонтные работы, а также сделать прогноз ресурса работы автомобиля.

При качественном диагностировании:

§ снижается количество отказов и простоев автомобиля, повышается безопасность движения;

§ увеличивается срок службы автомобиля, уменьшается расход запасных частей (этому способствует своевременная замена и ремонт узлов и деталей);

§ уменьшается трудоемкость ТО и ремонта путем сокращения объема ТР, часто являющегося результатом работы механизмов с невыявленными и неустраненными неисправностями; при этом исключаются некоторые операции, выполнение которых при каждом ТО необязательно;

§ снижается расход топлива за счет выявления и устранения неисправностей в системах питания и зажигания двигателя;

§ увеличивается пробег шин (благодаря своевременному контролю за их состоянием, а также за состоянием подвесок и мостов, контролю углов установки управляемых колес).

Цели диагностирования при техническом обслуживании :

§ определение действительной потребности в работах по техническому обслуживанию путем сопоставления фактических значений параметров с предельно допустимыми;

§ прогнозирование момента возникновения неисправности или отказа в работе того или иного агрегата автомобиля;

§ оценка качества выполнения работ по техническому обслуживанию агрегатов и узлов автомобиля.

Цели диагностирования при ремонте :

§ выявление причин неисправности или отказа в работе агрегатов и узлов автомобиля;

§ установление наиболее эффективного способа устранения неисправностей (на месте, со снятием узла или агрегата, с полной или частичной разборкой);

§ контроль качества выполнения ремонтных работ.

В технологическом процессе технического обслуживания и ремонта автомобилей предусматриваются:

§ общее (комплексное) диагностирование (Д1);

§ поэлементное (углубленное) диагностирование (Д2);

§ предремонтное диагностирование (Д).

Общее (комплексное) диагностирование проводятна заключительной стадии ТО-1. При этом определяют техническое состояние агрегатов и узлов, преимущественно обеспечивающих безопасность движения и пригодность автомобиля к дальнейшей эксплуатации.

§ крепление рулевого механизма;

§ люфт рулевого колеса и в шарнирах рулевых тяг;

§ состояние узлов и деталей подвески;

§ состояние рамы и буксирного приспособления;

§ состояние шин и давление воздуха в них;

§ исправность и действие тормозных систем;

§ исправность и действие световой и звуковой сигнализации автомобиля.

Если изучаемые параметры находятся в допустимых пределах, то диагностирование завершает комплекс работ по ТО-1. Если нет, то выполняют поэлементное диагностирование.

Поэлементное (углубленное) диагностирование выполняют обычно за 1…2 дня перед ТО-2. При этом проводится детальное обследование технического состояния агрегатов и механизмов автомобиля, выявляются неисправности и их причины и определяется потребность в их техническом обслуживании или ремонте.

Контрольно-диагностический пост поэлементного диагностирования оборудуется стендами с беговыми барабанами. При установке ведущих колес автомобиля на беговые барабаны на посту определяют:

§ мощность двигателя и расход топлива;

§ посторонние шумы и перебои в работе двигателя;

§ пропуск газов через цилиндропоршневую группу и клапаны;

§ давление масла в системе смазки;

§ температурный режим работы системы охлаждения;

§ угол опережения и установку зажигания;

§ пробуксовывание сцепления.

При неработающем двигателе, вне стенда, на посту проверяют:

§ люфты в коробке передач, карданных шарнирах и в главной передаче (ведущем мосту);

§ радиальный зазор в шкворневых соединениях, ступицах колес;

§ свободный ход педалей управления сцеплением и рабочей тормозной системы;

§ усилие вращения рулевого колеса и т. д.

Диагностическим оборудованием могут быть оснащены и другие посты, контролирующие качество технического обслуживания и ремонта автомобиля, непосредственно предназначенные для обслуживания конкретного агрегата, механизма или системы автомобиля (например, стенд для проверки тормозной системы автомобилей).

Предремонтное диагностирование выполняется непосредственно в ходе технического обслуживания с целью определения потребности в выполнении отдельных операций по ремонту.

Методы диагностирования. Диагностирование предусматривается:

§ по параметрам рабочих процессов (например, по расходу топлива, мощности двигателя, тормозному пути), измеряемым при наиболее близких к эксплуатационным условиям режимах;

§ по параметрам сопутствующих процессов (например, посторонним шумам, нагреву деталей и узлов, вибрациям), также измеряемым при наиболее близких к эксплуатационным условиям режимах;

§ по структурным параметрам (например, зазорам, люфтам), измеряемым у неработающих механизмов.

При диагностировании с помощью контрольно-диагностических средств определяют диагностические параметры, по которым судят о структурных параметрах, отражающих техническое состояние механизма и автомобиля в целом.

Диагностический параметр – это физическая величина, контролируемая средствами диагностирования и косвенно характеризующая работоспособность автомобиля или его агрегатов и систем (например, шум, вибрация, стук, снижение мощности двигателя, давление масла или воздуха).

Структурный параметр – это физическая величина, непосредственно отражающая техническое состояние механизма (например, геометрическая форма и размеры, взаимное расположение поверхностей деталей).

Существует взаимосвязь структурных и диагностических параметров. Так как непосредственное измерение структурных параметров затруднено необходимостью разборки механизмов, возникает потребность в косвенной оценке структурных параметров через диагностические. Диагностирование позволяет своевременно выявить неисправности и предупредить возможные отказы, сокращая потери от простоев автомобиля при устранении непредвиденных поломок.

Диагностические и структурные параметры подразделяются по своим значениям. Различают:

§ номинальное значение параметра, которое определяется конструкцией и функциональным назначением механизма. Номинальные значения обычно имеют новые механизмы или механизмы, прошедшие капитальный ремонт;

§ допускаемое значение параметра – это такое граничное значение, при котором механизм может сохранять работоспособность до следующего планового ТО без каких-либо дополнительных воздействий;

§ предельное значение параметра – это наибольшая или наименьшая его величина, при которой еще обеспечивается работоспособность механизма. Но при достижении предельного значения параметра механизма дальнейшая его эксплуатация либо недопустима, либо экономически нецелесообразна;

§ упреждающее значение параметра – это ужесточенное предельно допустимое его значение, при котором обеспечивается заданный уровень вероятности безотказной работы механизма на предстоящем межконтрольном пробеге автомобиля.

Средства диагностирования:

§ встроенные, которые являются составной частью автомобиля. Это датчики и приборы на панели приборов. Их используют для непрерывного или достаточно частого измерения параметров технического состояния автомобиля. Современные средства встроенного диагностирования на основе электронного блока управления (ЭБУ) позволяют водителю постоянно контролировать состояние тормозных систем, расход топлива, токсичность отработавших газов, а также выбирать наиболее экономичный режим работы автомобиля;

§ внешние средства диагностирования не входят в конструкцию автомобиля. К ним относятся стационарные стенды, передвижные приборы и станции, укомплектованные необходимыми измерительными устройствами.

Диагностические стенды с беговыми барабанами позволяют имитировать условия движения и нагрузки. Стенд оснащен тормозной установкой и расходомером топлива, что в конечном итоге позволяет проверить основные характеристики всех узлов и агрегатов автомобиля, сравнить их с паспортными данными, произвести корректировку датчиков и приборов на панели приборов автомобиля, выявить неисправности.

Посты диагностики отдельных агрегатов оснащаются специальными приборами и приспособлениями для измерения и контроля основных параметров агрегата и выявления их неисправностей. Так, пост для диагностирования работы двигателя комплектуется виброакустической аппаратурой, стетоскопом и другими приборами, позволяющими по особенностям и уровню шумов и стуков определять техническое состояние кривошипно-шатунного и газораспределительного механизмов. С помощью стетоскопа определяют увеличение зазоров в латунных и коренных подшипниках коленчатого вала, между поршнем и цилин­дром, клапанами и толкателями и т. д., устанавливают необходимость выполнения регулировочных и ремонтных работ.

Передвижные ремонтные и ремонтно-диагностические мастерские предназначены для проведения технического обслуживания и ремонта автомобилей вне СТОА и автотранспортных предприятий. Располагаются такие мастерские в кузове грузовых автомобилей и включают в себя оборудование для выполнения заточных работ по металлообработке, слесарных, сверлильных, токарных и др. Такой комплекс оборудования позволяет проводить мелкий ремонт, вплоть до изготовления неответственных деталей.

Кроме того, передвижная ремонтная мастерская комплектуется приспособлениями, приборами, датчиками для измерения рабочих параметров агрегатов и узлов автомобиля и диагностирования их технического состояния.

Оборудование для диагностики двигателей. Все оборудование для диагностики двигателей можно подразделить на три основные группы:

1) сканеры блоков управления двигателями;

2) измерительные приборы;

3) тестеры исполнительных устройств и узлов двигателя.

Первая группа приборов представляет собой набор устройств, предназначенных для установления связи с блоками управления автомобилей и выполнения таких процедур, как чтение и стирание ошибок, чтение текущих значений датчиков и внутренних параметров системы управления, проверка работоспособности исполнительных устройств, адаптация системы управления при замене отдельных агрегатов автомобиля или при капитальном ремонте двигателя. Эта группа диагностических приборов развивается очень динамично, и каждый год появляются все более усовершенствованные сканеры. Сканеры можно сравнивать друг с другом по таким параметрам, как таблица применяемости по типам автомобилей и перечню автомобильных систем, набор функций, реализованных в сканере по каждому автомобилю или системе, способу модернизации программного обеспечения.

По оценкам ряда автосервисов, активно занимающихся диагностикой, иметь набор сканеров для всех автомобилей с расширенными возможностями (вплоть до адаптации) экономически нецелесообразно, а при отсутствии должным образом подготовленного персонала еще и опасно неправильные действия при вмешательстве в работу блока могут привести к ухудшению работы ЭСУД и создать проблемы в отношениях с клиентом. При выборе моделей сканеров надо принимать во внимание специализацию сервиса и перечень наиболее часто обслуживаемых моделей.

Кроме того, можно иметь 1…2 сканера со средним набором функций, но с широким набором моделей автомобилей – при этом в большинстве случаев решаются поставленные задачи, а функциональные недостатки сканеров компенсируются при помощи универсального оборудования из второй и третьей групп.

Во второй группе приборов собраны устройства, которые можно использовать для диагностики любых двигателей независимо от способа управления. Все эти устройства применяют для обнаружения неисправностей, а также для проверки показаний сканеров, так как ни одна электронная система не может проверить саму себя с абсолютной достоверностью – например, подсос воздуха во впускном коллекторе может вызвать появление сообщения об отказе расходомера воздуха и т. д. При отсутствии перечисленных ниже приборов зачастую принимается решение о замене того или иного датчика без должной проверки, что впоследствии может оказаться неверным. Ниже приведены наиболее известные представители этой группы устройств.

Газоанализаторы. Если для карбюраторных двигателей достаточно иметь двухкомпонентный газоанализатор, то с новыми, оснащенными катализаторами, лямбда-зондами и т. д. этого недостаточно – для измерения состава выхлопных газов инжекторного двигателя необходим четырехкомпонентный газоанализатор с повышенной, по сравнению с двухкомпонентным, точностью измерения и с расчетом соотношения «воздух – топливо».

Измерители давления . К этой группе приборов, кроме давно известного всем работникам автосервиса компрессометра, следует, прежде всего, отнести тестер давления топлива, которого не было в автосервисах, рассчитанных на ремонт карбюраторных автомобилей. Главные характеристики этого прибора – диапазон измеряемого давления (от 0 до 0,6…0,8 МПа) и перечень переходных штуцеров для подключения к топливным системам различных автомобилей. Сюда относятся тестер утечек клапанно-поршневой группы, позволяющий более точно по сравнению с компрессометром определить место и характер нарушения герметичности камеры сгорания, вакуумметр, обеспечивающий оценку правильности работы впускной системы двигателя, и тестер противодавления катализатора, позволяющий оценить пропускную способность катализатора.

Специализированные автомобильные тестеры . При ремонте контактных систем зажигания для поиска отказов в этой системе часто бывает достаточно специализированного автомобильного тестера. Для диагностики электронных систем зажигания на первый план выходят автомобильные осциллографы и мотор-тестеры, обладающие по сравнению с ними гораздо большими возможностями.

Стробоскопы. Хотя установка зажигания в большинстве инжекторных двигателей невозможна, проверочные значения для систем зажигания существуют, и своевременное определение несоответствия расчетного и реального углов опережения зажигания часто помогает определить характер неисправности. Для проверки угла опережения зажигания в инжекторных двигателях необходимы стробоскопы, оборудованные регулировкой задержки вспышки, так как эти двигатели обычно не имеют отдельной метки для установки опережения зажигания.

Специализированные автомобильные осциллографы . Эти приборы имеют набор специализированных датчиков (высокое напряжение, разрежение, ток) и специальную систему синхронизации с вращением двигателя при помощи датчика тока свечи первого цилиндра, который позволяет диагностировать ЭСУД по любым параметрам. При этом они сохраняют возможности универсального осциллографа и могут использоваться для проверки работы практически всех электрических цепей автомобиля. Кроме того, они могут заменять ряд отдельных устройств, применяемых для диагностики – например, при наличии в составе автомобильного осциллографа датчика не требуется приобретать вакуумметр.

Мотор-тестеры. Измерительная часть мотор-тестера в основном совпадает с измерительной частью автомобильного осциллографа. Отличие мотор-тестера заключается в том, что он может не только отображать осциллограммы любых измеряемых цепей, но и производить комплексные оценки работы двигателя сразу по нескольким параметрам (динамическая компрессия, разгон, сравнительная эффективность работы цилиндров и т. д.). Это позволяет существенно снизить время на поиск неисправности. При закупке оборудования также необходимо учесть, что неотъемлемой частью мотор-тестеров часто являются такие устройства, как газоанализатор, стробоскоп и т. д., поэтому, хотя цена мотор-тестера достаточно высока, при его покупке переплата в общей сумме будет относительно невелика по сравнению с приобретением отдельно автомобильного осциллографа, газоанализатора и стробоскопа.

Третья группа приборов представляет собой оборудование для углубленной проверки ЭСУД и ее отдельных узлов. В состав этой группы входят приведенные ниже приборы.

Имитаторы сигналов датчиков . Предназначены для проверки реакции блока на изменение сигналов отдельных датчиков (например, датчиков температуры или положения дроссельной заслонки) – в некоторых случаях блок управления может не реагировать на изменение сигнала от датчика, и этот факт может быть воспринят как отказ датчика.

Тестер форсунок . В самом начале развития диагностики такие устройства имели большой спрос на рынке. Однако в последнее время предпочтение отдается стендам чистки и проверки форсунок, в функции которых входит проверка, а при необходимости и чистка форсунок.

Вакуумный насос. Этот прибор позволяет проверить работоспособность исполнительных устройств, приводимых в действие разрежением во впускном коллекторе (например, клапана дожига или клапана продувки катализатора), а также выполнить проверку датчика разрежения во впускном коллекторе на неработающем двигателе.

Тестер свечей зажигания . Позволяет визуально проверить работу свечей зажигания без установки их на двигатель. В некоторых тестерах существует возможность проверки свечи под давлением, т. е. в условиях, приближенным к реальным.

Высоковольтный разрядник . С его помощью можно проверить работу системы зажигания автомобиля на нагрузку, приближенную к реальной. Для систем зажигания с механическим распределителем используется разрядник с воздушным зазором 10 мм, для современных систем зажигания без распределителя – 20…21 мм.

Перечисленные устройства могут использоваться при диагностике различных типов машин, однако самым главным «инструментом» является человек, поскольку именно от него зависят правильные выводы из показаний огромного количества различных приборов.

Фундаментальные диагностические приборы, мотор-тестеры, сканеры и газоанализаторы в большинстве случаев позволяют получить исчерпывающий объем данных по исследуемому двигателю. Однако нередко случается, что применение современных базовых средств диагностики бывает невозможным, недостаточным или малоэффективным. Например, далеко не ко всем машинам можно подключить сканер. Даже подключив его, можно не обнаружить сохраненные коды ошибок. Может оказаться и так, что дефект не проявляется в искажении электрических сигналов и не отражается существенно на качестве сгорания топливной смеси. В этом случае и мотор-тестер, и газоанализатор будут также бессильны. Несмотря на колоссальные возможности приборы (мотор-тестеры, сканеры и газоанализаторы) не в состоянии охватить все области информационного поля, отражающего текущее состояние двигателя и его систем.

В этом состоит одна из причин того, почему инструментарий универсального диагноста не ограничивается тремя типами оборудования. Существует широкий ассортимент дополнительных приборов и приспособлений, используя которые можно получить специфическую диагностическую информацию. Порой именно она позволяет обнаружить неисправность.

Нередки ситуации, когда базовый прибор указывает на нарушение работоспособности одной из систем двигателя. Допустим, показания газоанализатора указывают на неправильное дозирование топлива. Чтобы установить причину отклонения от нормы, локализовать неисправность, следует провести дополнительные пошаговые проверки (проконтролировать работу топливного насоса, форсунок и т. д.). При этом не обойтись без вспомогательного оборудования. Или, например, сканер зафиксировал ошибку в работе датчика системы управления. Далее необходимо выяснить, чем вызвана ошибка: отсутствием питания, неисправностью самого датчика или дефектами выходных электрических цепей. Для этого также требуются вспомогательные приборы.

Вспомогательное оборудование . Спектр вспомогательного оборудования широк. Особенно большое количество приборов предлагается для исследования в областях, в которых информативность основного диагностического оборудования невысока, либо отсутствует вовсе. Диагностика состояния механики двигателя, выполняемая при помощи мотор-тестера, не позволяет с абсолютной достоверностью судить о степени ее износа. Именно поэтому существует немало приборов, позволяющих подтвердить возникшие подозрения о неполадках другими средствами.

Компрессометр – прибор для определения давления в камере сгорания в конце такта сжатия в режиме прокрутки двигателя стартером. Этот параметр характеризует состояние поршневой группы и клапанного механизма.

Если компрессометр используется в профессиональных целях, предпочтение следует отдавать моделям с гибким соединительным шлангом, что позволяет легко подсоединить прибор в двигателях с затрудненным доступом к свечным отверстиям. Для удобства работы необходим обратный клапан для замера компрессии одним оператором, а также быстросъемные разъемы – для замены адаптеров. Достаточно иметь 3…4 адаптера для различных типов свечной резьбы. Неплохо, если в комплект компрессометра входят метчики для восстановления свечных резьб. Корпус манометра должен быть защищен ударопрочной пластмассой или резиной. Высокой точности от манометра не требуется, так как для анализа используется величина отклонения компрессии в разных цилиндрах.

Тестер негерметичности надпоршневого пространства позволяет не только определить степень герметичности камеры сгорания, но и установить причину ее нарушения. Для этого в исследуемую камеру сгорания с поршнем в положении верхней мертвой точки (ВМТ) подается сжатый воздух. Давление нагнетания регулируется редуктором и устанавливается по манометру. О величине утечек судят по разности показаний давления подаваемого воздуха и давления, создаваемого в камере сгорания. Чем она выше, тем менее герметично надпоршневое пространство. В случае негерметичности причина утечек определяется по направлению истечения сжатого воздуха (в выхлопную систему, во впускной коллектор, в отверстие масляного щупа и т. д.).

Кроме соответствия повышенным требованиям прочности и надежности соединений, хороший тестер отличает оснащение надежным редуктором для плавной регулировки давления нагнетания и набором адаптеров для различных типов свечных отверстий. Шкалы манометров имеют удобно читаемую градуировку. Для обеспечения достаточной чувствительности прибор должен быть рассчитан на максимальное рабочее давление 0,6…0,7 МПа.

Эндоскоп – важный прибор, поскольку это единственное средство, которое позволяет без трудоемкой разборки двигателя с абсолютной точностью сделать заключение о степени износа стенок цилиндров, величине нагара, степени повреждения днищ поршней или поверхностей клапанов. Эндоскоп также с успехом применяют для наружного обследования двигателя и навесного оборудования в труднодоступных местах.

Как инструмент для диагностики двигателя эндоскоп должен обладать рядом особенностей. Практика показывает, что оптимальный эндоскоп должен иметь как минимум два зонда (прямой и шарнирный) линзового типа диаметром 6…8 мм. Гибкие оптоволоконные зонды для двигательной диагностики малоприемлемы. Они дают очень искаженное, узкопериферийное изображение, к тому же их оптические возможности ниже, чем у линзовых, что снижает вероятность правильной интерпретации изображения. Чаще их используют для исследования закрытых полостей кузова.

Отечественная промышленность не выпускает эндоскопов с шарнирными зондами. Наиболее простые экземпляры, оснащенные осветителем и прямым зондом, стоят около 800 долл. США. Следует иметь в виду, что на некоторых моделях автомобилей с их помощью нельзя осмотреть цилиндры двигателя из-за неудобной ориентации свечных колодцев.

Стетоскоп предназначен для обнаружения посторонних шумов, свидетельствующих о ненормальной работе механических систем двигателя.

С одной стороны, информация, получаемая с его помощью, носит субъективный характер, поскольку оценка зависит от опыта диагноста. С другой стороны, при наличии соответствующего опыта и практики применение стетоскопа позволяет легко установить источник посторонних звуков. Например, не составит труда быстро определить, где скрыт дефект – в двигателе или навесном оборудовании. Для этого не потребуется снимать приводные ремни.

Используя стетоскоп, в большинстве случаев можно четко определить стук подшипника генератора, гидроусилителя или натяжного ролика ремня газораспределительного механизма (ГРМ). У некоторых моделей двигателей такие неисправности возникают с завидной периодичностью.

Вакуумметр широко используется для измерения разрежения при исследовании всех типов бензиновых двигателей. В двигателях, оборудованных дроссельной заслонкой, его чаще всего используют для замера разрежения во впускном коллекторе – интегрального параметра, зависящего от многих факторов. По его показаниям можно определить неисправности в смесеобразовании, системе газораспределения (связанных с неисправностью, неправильной регулировкой или неудовлетворительным состоянием клапанов), системе зажигания (вызванных нарушением угла опережения зажигания (УОЗ)). Все они приводят к некачественному сгоранию топлива. Выполнив на начальном этапе работы этот несложный тест, можно быстро исключить обширную область поиска. Вакуумметр в этом случае не позволяет локализовать неисправность, а лишь указывает на ее наличие или отсутствие.

Кроме измерения разрежения во впуске, вакуумметр можно использовать для контроля давления в локальных точках других систем двигателя: вентиляции картера, продувки адсорбера, рециркуляции выхлопных газов и др. С помощью многих приборов данного типа можно измерять как разрежение, так и невысокое избыточное давление. Это позволяет дополнительно определять, например, давление наддува в турбодвигателях и даже давление подачи насоса карбюраторного двигателя.

Установка для локализации точек подсоса воздуха , по мнению специалистов, является одной из самых полезных разработок последнего времени. Она предназначена для быстрого выявления мест негерметичности впускного коллектора, выхлопной, вакуумной систем и системы охлаждения. Установка работает от бортовой сети автомобиля и чрезвычайно проста в эксплуатации. В испытуемую систему нагнетается газообразное вещество белого цвета. Предварительно все выходные, сообщающиеся с атмосферой отверстия исследуемого объема закрываются входящими в комплект прибора заглушками. Место негерметичности определяют по наличию истечения продукта. Из альтернативных методов определения места утечки можно упомянуть обработку на работающем двигателе подозрительных мест специальными спреями, соляркой или бензином. Попадание их паров вместе с засасываемым воздухом в двигатель вызывает повышение его оборотов, что и сигнализирует о наличии подсоса. Эти способы очень неудобны в применении, а обработка бензином еще и пожароопасна.

Ультразвуковые детекторы являются разновидностью приборов для поиска мест утечек.

Комплект для измерения давления топлива – основной диагностический инструмент при исследовании гидравлической части устройств впрыска топливоподачи всех типов. С его помощью можно проверить работоспособность топливного насоса, фильтра, регулятора давления, дозатора топлива и др.

Поступающие в продажу комплекты различаются главным образом набором адаптеров, служащих для подключения к топливным системам автомобилей разных производителей. Выпускаются универсальные и специализированные комплекты, отличающиеся по цене. При выборе комплекта следует иметь в виду, что абсолютно универсальных наборов адаптеров не существует.

При покупке необходимо обращать внимание на качество изготовления быстросъемных коннекторов, на наличие запорных золотниковых клапанов, позволяющих осуществлять подсоединение манометра к магистралям под давлением без пролива топлива. Большое значение имеет длина гибкого шланга манометра. Иногда приходится производить замеры давления, развиваемого насосом, на ходу. Для этого манометр закрепляют на ветровом стекле или размещают в салоне.

Тестер электромагнитных форсунок представляет собой электронное устройство, имитирующее сигнал управления форсунками различной длительности и частоты. Он позволяет проверить работоспособность электромагнитного клапана форсунки на разных режимах работы. Работоспособность определяется по звуку срабатывания электромагнита при подаче на него управляющего сигнала от тестера.

Если использовать тестер совместно с комплектом для измерения давления, можно получить информацию об относительной пропускной способности форсунок. Она определяется по разнице величины падения давления в топливной рейке при равном количестве циклов впрыска каждой форсунки.

Лампы-пробники цепи форсунки в отличие от тестера применяются не для проверки самих форсунок, а для экспресс-диагностики электрической цепи управления форсунками. С их помощью быстро и наглядно можно определить, поступают ли на форсунку управляющие импульсы от ЭСУД.

При проведении теста лампа с соответствующим разъемом вставляется в кабельную часть разъема форсунки. В режиме прокрутки двигателя стартером, когда частота вращения коленчатого вала двигателя невысока, наличие управляющих импульсов контролируется по вспышкам лампы. Такой тест имеет смысл выполнять, когда машина не заводится.

Лампы не так просты, как это может показаться. Их сопротивление подобрано соответствующим сопротивлению соленоидного клапана форсунок. Этим гарантируется полная идентичность электрических процессов в цепи управления штатным условиям. Универсальный комплект включает несколько типов ламп-пробников с разными характеристиками и разъемами. Он идеально подходит для диагностов, работающих по вызову.

Мультиметр с полным основанием можно назвать настольным прибором диагноста. Благодаря своей универсальности он можно применяться практически на любом этапе исследования. Очень часто его используют в качестве самостоятельного инструмента. Иногда – совместно со сканером или мотор-тестером. Мультиметр позволяет проконтролировать параметры бортовой сети, проверить предположения об обрывах или замыканиях в проводке, в простой форме проверить работоспособность датчиков и исполнительных механизмов, в том числе перед их установкой на автомобиль. Прибор можно использовать для измерений в режиме движения.

Необходимо подчеркнуть, что для целей диагностики следует использовать специализированные автомобильные мультиметры. Они имеют ряд отличий от аналогичных универсальных приборов. Прежде всего, это наличие специфических режимов: измерения частоты вращения коленчатого вала, длительности, частоты и скважности следования импульсов (например, длительности впрыска топлива), измерения величины углового интервала накопления энергии катушкой зажигания.

В моделях с расширенным набором функций используются специальные датчики, которые могут в широком диапазоне значений измерять температуру, разрежение и давление жидкостей и газов, постоянные и переменные токи большой величины, например ток стартера в момент пуска двигателя. Автомобильные мультиметры последнего поколения обладают еще одной очень полезной функцией – они способны запоминать случайно возникающие, кратковременные (длительностью от 1 мс) колебания измеряемых электрических сигналов, т. е. фиксировать сбои, вызванные различными причинами.

Имитатор сигналов исправных датчиков в диагностическом процессе выполняет двойную функцию. Во-первых, он повышает вероятность принятия правильного решения при указании других диагностических средств, например сканера, на неисправность какого-либо датчика системы управления. В этом случае, подключив вместо предполагаемого неисправного датчика имитатор и анализируя реакцию системы управления, можно легко сделать окончательный вывод. Во-вторых, имитатор можно использовать для оказания на систему управления каких-либо испытательных воздействий. Это часто требуется для того, чтобы понять алгоритм работы системы, взаимосвязь ее элементов. Например, с помощью этого прибора можно легко смоделировать режим прогрева двигателя. Измеряя длительность впрыска топлива, можно понять, как она зависит от температуры двигателя.

Приборы, имеющие наибольшее число функций и, соответственно, более дорогие, имитируют плавно изменяемые по уровню характеристики датчиков сопротивления, напряжения, частоты и двухуровневый сигнал датчика кислорода. Они имеют автономное питание и снабжены жидкокристаллическим дисплеем. Более дешевые версии не имеют дисплея, регулировка уровня сигналов у них ступенчатая и, как правило, в меньшем диапазоне.

Тестер-разрядник – средство экспресс-диагностики систем зажигания всех типов и конструкций. Он позволяет быстро установить, насколько эффективно система накапливает и отдает энергию. Проверка искровым разрядником носит комплексный характер, результат интерпретируется на уровне «работает – не работает». В случае неисправности для поиска причины (провод – распределитель – катушка – электронный модуль) необходимы дополнительные диагностические средства.

Набор проставок для доступа к первичной цепи системы зажигания используется при диагностике современных систем зажигания, в которых первичное напряжение на катушку зажигания подается через разъем, а не на открытые клеммы. В этом случае при снятии характеристик зажигания и при определении баланса мощности по цилиндрам существует проблема доступа к контактам первичной цепи. Прокалывание изоляции проводов булавкой не всегда обеспечивает достаточно надежный контакт и грозит коротким замыканием с тяжелыми последствиями.

Выйти из затруднительного положения можно, воспользовавшись Т-образными проставками, которые снабжены двумя выводами для надежного подсоединения измерительных приборов. Их подключают к разъему первичной цепи катушки, в разрыв цепи.

Универсальный набор соединителей предназначен для удобства, надежности и безопасности выполнения электрических измерений. Он незаменим при замерах электрических сигналов на контактах любой конфигурации в расстыкованном штырьковом разъеме без опасности их короткого замыкания. Эта непростая процедура обычно многократно усложняется, если разъем расположен в неудобном для доступа месте. Для удобства в набор, помимо различных типов контактных штырьков, входят несколько проводов-удлинителей, позволяющих наращивать и разветвлять измерительные линии.

Этим перечнем приборов и приспособлений обзор вспомогательного оборудования для диагностики двигателя не ограничивается. На самом деле его ассортимент гораздо шире. Оптимальный состав вспомогательного оборудования может варьироваться в зависимости от целей и средств.

Диагностические параметры, свойства тормозных систем автомобилей и факторы, влияющие на торможение, описаны в работе .

Для определения технического состояния тормозов используют три метода:

  • в дорожных условиях ходовые испытания;
  • в процессе эксплуатации за счет встроенных средств диагностики;
  • в стационарных условиях с использованием тормозных стендов.

Перечень параметров диагностирования и локализации неисправностей в

тормозах устанавливает ГОСТ 26048-83. Эти параметры подразделяются на две группы. Первая группа включает интегральные параметры общего диагностирования, а вторая - дополнительные (частные) параметры поэлементного диагностирования для поиска неисправностей в отдельных системах и устройствах.

Диагностические параметры первой группы: тормозной путь автомобиля и колеса, отклонение от коридора движения, замедление (установившаяся тормозная сила) автомобиля и колеса, удельная тормозная сила, уклон дороги (на котором удерживается автомобиль в заторможенном состоянии), коэффициент неравномерности тормозных сил колес оси, осевой коэффициент распределения тормозной силы, время срабатывания (или растормаживания) тормозного привода, давление и скорость изменения его в контурах тормозного привода и др.

Диагностические параметры второй группы: полный и свободный ход педали, уровень тормозной жидкости в резервуаре, сила сопротивления вращению незаторможенного колеса, путь и замедление выбега колеса, овальность и толщина стенки тормозного барабана, деформации стенки тормозного барабана, толщина тормозной накладки, ход штока тормозного цилиндра, зазор во фрикционной паре, давление в приводе, при котором колодки касаются барабана, и др.

Из числа этих параметров в соответствии с ГОСТ 254780-82 при стендовых испытаниях тормозов обязательно определяются тормозные силы на отдельных колесах, общая удельная тормозная сила, коэффициент осевой неравномерности тормозных сил, время срабатывания тормозов. При этом показатели общей удельной тормозной силы и коэффициент осевой неравномерности являются расчетными.

Дорожные испытания применяют, как правило, для «грубой» оценки тормозных качеств автомобиля. При этом результаты испытаний могут определяться визуально по тормозному пути и синхронности начала торможения колес при резком однократном нажатии на педаль тормоза (сцепление выключено), а также с использованием переносных приборов - деселерометров (или десел ерографов).

На дорожные испытания часто возлагают надежды дать ответ о тяговых, экономических, тормозных качествах автомобиля. При этом для тяговых, экономических, тормозных свойствах автомобиля, об управляемости и устойчивости его движения, поведении на разных скоростях, при разной загруженности, в установившихся и неустановившихся режимах, в разных дорожных и климатических условиях и т. д. Однако дорожные испытания имеют ряд недостатков. Диагностирование по тормозному пути должно проводиться на ровном, сухом, горизонтальном участке дороги с твердым покрытием, свободном от движущегося транспорта.

Этот способ испытаний все еще имеет довольно широкое распространение, хотя и имеет следующие довольно существенные недостатки:

  • 1. При торможении невозможно обеспечить стабильное нажатие на педаль тормоза с одинаковым усилием, вследствие чего результаты измерений значительно различаются на каждом из торможений.
  • 2. Тормозной путь в значительной степени зависит от опыта водителя автомобиля, состояния покрытия дороги и условий движения.
  • 3. Определяется только общее замедление автомобиля. Нельзя дифференцированно определить отклонение тормозных усилий на отдельных колесах, что определяет устойчивость движения автомобиля при торможении.
  • 4. При испытаниях вероятна опасность возникновения несчастных случаев.
  • 5. Значительны затраты времени на испытания при большом износе шин и подвески вследствие блокировки колес.
  • 6. При плохих климатических условиях (дождь, снег, гололед) проводить измерения вообще невозможно.

По перечисленным причинам контроль тормозов на дороге по тормозному пути совершенно не удовлетворяет современным требованиям.

Диагностирование тормозов автомобилей на дороге по замедлению автомобилей производится с помощью деселерометров (деселерографов) также на ровном, сухом, горизонтальном участке дороги. При скорости 10...20 км/ч водитель резко тормозит однократным нажатием на педаль тормоза при выключенном сцеплении. При этом замеряется замедление автомобиля, не зависящее от скорости испытаний.

Для легковых автомобилей замедление должно составлять не менее 5,8 м/с 2 , а для грузовых (в зависимости от грузоподъемности) - от 5,0 до 4,2 м/с 2 . Для ручных тормозов замедление должно быть в пределах 1,5...2 м/с 2 . Принцип работы деселерометра (деселерографа) состоит в перемещении подвижной инерционной массы прибора относительно его корпуса, неподвижно закрепленного на автомобиле. Это перемещение обусловливается действием силы инерции, возникающей при торможении автомобиля и пропорциональной его замедлению.

Инерционной массой диселерометра (деселерографа) может быть поступательно движущийся груз, маятник (табл. 9.1), жидкость или датчик ускорения, а измерителем предельного замедления - стрелочное устройство, шкала, сигнальная лампа, самописец и т. д.

Деселерометр предназначен для оценки эффективности действия автомобильных тормозов путем замера величины максимального замедления движения автомобиля при торможении.

Тип прибора - ручной, инерционного действия, маятниковый.

Таблица 9.1

Технические характеристики деселерометра мод. 1155М

Основой прибора является маятник, который под влиянием инерционных сил, возникающих при торможении, отклоняется от нулевого положения на определенный угол, зависящий от величины замедления. Отклонение маятника регистрируется стрелкой, самофиксирующейся на делении шкалы, соответствующем максимальной достигнутой величине замедления. Показания прибора сравнивают с данными справочной таблицы (помещенной на задней крышке корпуса прибора) и судят о качестве работы тормозной системы.

Измерение замедления производят при торможении автомобиля, разогнанного до скорости 30 км/ч, на сухом ровном горизонтальном участке дороги с асфальтовом или цементобетонным покрытием.

Прибор с помощью резиновых присосов крепят на внутренней стороне ветрового стекла автомобиля.

Использование многоконтурных тормозных систем, оснащение их дополнительными устройствами (антиблокировочными устройствами, гидровакуумными усилителями, устройствами автоматической регулировки во фрикционной паре и т. д.) и ужесточение требований к тормозным качествам автомобилей делают неэффективными дорожные испытания.

В Украине с 01.01.1999 введен в действие стандарт ДСТУ 3649-97 «Средства транспортные дорожные. Эксплуатационные требования безопасности к техническому состоянию и методы контроля» взамен действовавшего ранее межгосударственного стандарта ГОСТ 25478-91. Этим документом предусмотрены два вида контроля рабочей тормозной системы (РТС): дорожные испытания и стендовые испытания. Ниже приводятся расчетные методы контроля тормозных систем, заимствованные из работы и Nj и 686 Н для ДТС остальных категорий. В процессе торможения не допускается корректировка водителем траектории движения ДТС, если это не требуется для обеспечения безопасности движения. В случае, когда потребовалась корректировка траектории, результат испытаний не засчитывается.

Состояние РТС оценивается по фактическому значению тормозного пути, который не должен превышать норматив, указанный в табл. 9.1.

Согласно ДСТУ допускается оценивать работоспособность РТС по критерию значения установившегося замедления ДТС (j ycT ), которое должно быть не менее 5,8 м/с 2 для ДТС категории Mj и 5,0 м/с 2 для всех прочих (с учетом автопоездов на базе ДТС категории МД. При этом необходимо контролировать время срабатывания тормозной системы, которое для ДТС с гидравлическим приводом должно быть не более 0,5 с и для ДТС с другим приводом - не более 0,8 с.

Время срабатывания тормозной системы (т с) определяется стандартом Украины ДСТУ 2886-94 как промежуток времени от начала торможения до момента времени, в который замедление (тормозная сила ДТС) принимает установившееся значение.

Наибольшую эффективность диагностирования тормозных систем обеспечивают специализированные стенды, которые гарантируют точность и достоверность диагностирования.

В процессе развития стендовой техники были опробованы самые разнообразные конструкции. Основным элементом, определяющим все различия, были опорные поверхности для проверяемых колес.

Основным типом стенда является одноосный стенд с беговыми барабанами.

Стендовые испытания основаны на принципе обратимости движения: проверяемый автомобиль неподвижен, а его вращающиеся колеса опираются на движущуюся опорную поверхность. Самыми распространенными стендами являются цилиндрические поверхности спаренных роликов. На полноопорных стендах вращаются все колеса, на одноосных стендах - только колеса одной оси.

Работа автомобиля на стенде моделирует его реальную работу на дороге. Как при любом моделировании, здесь воспроизводятся не все факторы реального движения, а лишь самые существенные (с точки зрения разработчика стенда и технологии испытаний). Так, обычно не моделируется набегающий поток воздуха, из-за чего при тяговых испытаниях не действует аэродинамическое сопротивление, а также меняется тепловой режим работающего двигателя. Далее, в эксплуатации используют большей частью одноосные стенды, что существенно влияет на моделирование рабочих режимов.

Тем не менее стендовые испытания имеют ряд весьма важных достоинств.

Таблица 9.2

Нормативные значения тормозного пути для дорожных транспортных средств, находящихся в эксплуатации (по ДСТУ 3649-97)

Примечание: V 0 - начальная скорость торможения в км/ч.

По назначению стенды можно разделить на тяговые для контроля тяговых и экономических свойств (то есть силового агрегата), тормозов и других систем.

По методу создания действующих сил различают силовые, инерционные и комбинированные инерционно-силовые стенды. Самый общий принцип стендового контроля состоит в том, что колеса автомобиля взаимодействуют с опорными элементами стенда, причем на колеса действуют силы двух групп: движущие и тормозные. Создают их либо силовыми устройствами - двигателями и тормозами, либо инерционными элементами - массами и маховиками. Соответственно называют силовыми и инерционными методами испытаний.

При силовом методе, как правило, используют установившиеся режимы, то есть контроль при постоянной скорости. При инерционном методе режимы только неустановившиеся (динамические), скорости меняются, за счет ускорений создаются инерционные силы (табл. 9.3).

При стендовых испытаниях критериями технического состояния РТС являются общая удельная тормозная сила и время срабатывания ТС на стенде, а также осевой коэффициент равномерности тормозных сил для каждой оси. Общая удельная тормозная сила {у,) должна быть не менее 0,59 для одиночных ДТС категории Mj и 0,51 для всех прочих. При этом максимальное значение коэффициента неравномерности любой оси (A” H) не должно превышать 20 % в диапазоне тормозных сил от 30 до 100 % максимальных значений. Указанные критерии вычисляют по следующим формулам:

где Р Т max i - максимальное значение тормозной силы на /-м колесе, Н; п - общее количество колес, оборудованных тормозными механизмами; М а - масса автомобиля, кг; g - ускорение свободного падения, 9,80665 м/с 2 ;

где Р тл, Р тп - значения тормозной силы на левом и правом колесах одной оси соответственно, Н; Р т тах - большее из двух указанных значений тормозной силы.

Таблица 9.3

Назначение стендов и методы испытаний

По ГОСТ 25478 коэффициент неравномерности вычисляется иначе:

Время срабатывания тормозной системы на стенде (т сп) - промежуток времени от начала торможения до момента времени, в который тормозная сила колеса ДТС, находящегося в наихудших условиях, достигает установившегося значения, определяется по ДСТУ 2886-94.

На стенде ДТС должно испытываться в состоянии полной массы. Допускается проводить испытания ДТС с пневмоприводом в снаряженном состоянии. В этом случае максимальные тормозные силы колес и время срабатывания должны быть пересчитаны. Общая удельная тормозная сила и время срабатывания на стенде должны определяться как среднее арифметическое значение по результатам трех испытаний, округленное до десятых долей. Если разница между каким- либо из этих значений и средним больше 5 %, испытания необходимо повторить. Как и при дорожном методе, испытания следует проводить при «холодных» тормозных механизмах.

Требование выполнять стендовый контроль тормозов ДТС в состоянии полной массы исходит из ограниченных возможностей большинства силовых стендов по реализации тормозных сил (0,7...0,9 от действующей в момент испытаний нагрузки на колесо; у инерционных стендов это отношение несколько выше - q = 1,0... 1,2). Требование это нереально; не случайно стандарт допускает для ДТС с пневмоприводом (то есть большинства грузовых автомобилей и автобусов) испытания в снаряженном состоянии. Не исключено, что оно будет соблюдаться при государственных техосмотрах легковых автомобилей, где можно посадить в салон водителя, инспектора и двух-трех человек из очереди. Но уже для микроавтобусов, не говоря о грузовых автомобилях и автобусах с гидроприводом тормозов, это неосуществимо. При регулярном контроле в эксплуатации, выполняемом в автотранспортных предприятиях (АТП) и на станциях технического обслуживания (СТО). Это требование никогда не будет соблюдаться. Выходом может послужить искусственное догружение проверяемых колес, но стенды с догружателями массового распространения не получили.

Во всех действующих стандартах для расчета нормативов использовано упрощенное представление процесса торможения. Фактическая тормозная диаграмма автомобиля имеет довольно сложную конфигурацию. Один из примеров записи замедления функции времени показан на рис. 9.1 (тонкая зубчатая линия) }

Последние материалы раздела:

Смотреть что такое
Смотреть что такое "душевный мир" в других словарях

Энциклопедический словарь 1. МИР, а; мн. миры, ов; м. 1. Совокупность всех форм материи в земном и космическом пространстве; Вселенная....

Наталья СтепановаМолитвенный щит
Наталья СтепановаМолитвенный щит

Все дело в том, дорогие мои, что Господь Бог наделил меня искренней любовью к людям. Этому меня учила и моя бабушка. Если говорить совсем кратко,...

Сонник: к чему снится Лошадь
Сонник: к чему снится Лошадь

Во сне дано не каждому, ведь это сильное, свободолюбивое животное может запросто скинуть своего наездника. Сон, в котором сновидец скачет на...