Роль двигателя внутреннего сгорания. Общее устройство и принцип работы двигателя

В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу.

Различают следующие основные типы двигателей внутреннего сгорания: поршневой, роторно-поршневой и газотурбинный. Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.

Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются: автономность, универсальность (сочетание с различными потребителями), невысокая стоимость, компактность, малая масса, возможность быстрого запуска, многотопливность.

Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков , к которым относятся: высокий уровень шума, большая частота вращения коленчатого вала, токсичность отработавших газов, невысокий ресурс, низкий коэффициент полезного действия.

В зависимости от вида применяемого топлива различают бензиновые и дизельные двигатели . Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.

Водородный двигатель с точки зрения экологии является перспективным, т.к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.

Устройство двигателя внутреннего сгорания

Поршневой двигатель внутреннего сгорания включает корпус, два механизма (кривошипно-шатунный и газораспределительный) и ряд систем (впускную, топливную, зажигания, смазки, охлаждения, выпускную и систему управления).

Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.

Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.

Работа двигателя внутреннего сгорания

Принцип работы ДВС основан на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.

Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель): впуск, сжатие, рабочий ход и выпуск.

Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).

На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.

На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.

Такт рабочий ход сопровождается воспламенением топливно-воздушной смеси (принудительное или самовоспламенение). В результате возгорания образуется большое количество газов, которые давят на поршень и заставляют его двигаться вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля.

При такте выпуск открываются выпускные клапаны газораспределительного механизма, и отработавшие газы удаляются из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу.

Рассмотренный принцип работы двигателя внутреннего сгорания позволяет понять, почему ДВС имеет небольшой коэффициент полезного действия - порядка 40%. В конкретный момент времени как правило только в одном цилиндре совершается полезная работа, в остальных – обеспечивающие такты: впуск, сжатие, выпуск.

(двигатель внутреннего сгорания) является тепловой машиной и работает по принципу сжигания смеси топлива и воздуха в камере сгорания. Главной задачей такого устройства выступает преобразование энергии сгорания топливного заряда в механическую полезную работу.

Не смотря на общий принцип действия, сегодня существует большое количество агрегатов, которые существенно отличаются друг от друга благодаря целому ряду индивидуальных конструктивных особенностей. В этой статье мы поговорим о том, какие бывают двигатели внутреннего сгорания, а также в чем состоят их главные особенности и отличия.

Читайте в этой статье

Типы двигателей внутреннего сгорания

Начнем с того, что ДВС может быть двухтактным и четырехтактным. Что касается автомобильных моторов, указанные агрегаты четырехтактные. Такты работы двигателя представляют собой:

  • впуск топливно-воздушной смеси или воздуха (что зависит от типа ДВС);
  • сжатие смеси горючего и воздуха;
  • сгорание топливного заряда и рабочий ход;
  • выпуск из камеры сгорания отработавших газов;

По такому принципу работают как бензиновые, так и дизельные поршневые моторы, которые нашли широкое применение в автомобилях и на другой технике. Также стоит упомянуть и , в которых газовое топливо сжигается аналогично дизтопливу или бензину.

Бензиновые силовые агрегаты

Такая система питания, особенно распределенный впрыск, позволяет увеличить мощность мотора, при этом достигается топливная экономичность и происходит снижение токсичности отработавших газов. Это стало возможным благодаря точной дозировке подаваемого топлива под управлением (электронная система управления двигателем).

Дальнейшее развитие систем топливоподачи привело к появлению моторов с прямым (непосредственным) впрыском. Главным их отличием от предшественников является то, что воздух и топливо подается в камеру сгорания отдельно. Другими словами, форсунка устанавливается не над впускными клапанами, а монтируется прямо в цилиндр.

Подобное решение позволяет подавать топливо напрямую, причем сама подача разделена на несколько этапов (подвпрысков). В результате удается добиться максимально эффективного и полноценного сгорания топливного заряда, двигатель получает возможность работать на бедной смеси (например, моторы семейства GDI), падает расход топлива, снижается токсичность выхлопа и т.д.

Дизельные моторы

Работает на дизтопливе, а также в значительной мере отличается от бензинового. Основное отличие заключается в отсутствии искровой системы зажигания. Воспламенение смеси топлива и воздуха в дизеле происходит от сжатия.

Если просто, сначала в цилиндрах сжимается воздух, который сильно нагревается. В последний момент происходит впрыск прямо в камеру сгорания, после чего нагретая и сильно сжатая смесь воспламеняется самостоятельно.

Если сравнивать дизельные и бензиновые ДВС, дизель отличается более высокой экономичностью, лучшим КПД и максимумом , который доступен на низких оборотах. С учетом того, что дизели развивают больше тяги при меньших оборотах коленвала, на практике такой мотор не нужно «крутить» на старте, а также можно рассчитывать на уверенный подхват с самых «низов».

Однако в списке минусов таких агрегатов можно выделить , а также больший вес и меньшие скорости в режиме максимальных оборотов. Дело в том, что дизель изначально «тихоходный» и имеет меньшую частоту вращения по сравнению с бензиновыми ДВС.

Дизели также отличаются большей массой, так как особенности воспламенения от сжатия предполагают более серьезные нагрузки на все элементы такого агрегата. Другими словами, детали в дизельном моторе более прочные и тяжелые. Также дизельные моторы более шумные, что обусловлено процессом воспламенения и сгорания дизельного топлива.

Роторный двигатель

Двигатель Ванкеля (роторно-поршневой двигатель) представляет собой принципиально иную силовую установку. В таком ДВС привычные поршни, которые совершают возвратно-поступательные движения в цилиндре, попросту отсутствуют. Главным элементом роторного мотора является ротор.

Указанный ротор вращается по заданной траектории. Роторные ДВС бензиновые, так как подобная конструкция не способна обеспечить высокую степень сжатия рабочей смеси.

К плюсам относят компактность, большую мощность при незначительном рабочем объеме, а также способность быстро раскручиваться до высоких оборотов. В результате автомобили с таким ДВС обладают выдающимися разгонными характеристиками.

Если говорить о минусах, то стоит выделить заметно сниженный ресурс сравнительно с поршневыми агрегатами, а также высокий расход топлива. Также роторный двигатель отличается повышенной токсичностью, то есть не совсем вписывается в современные экологические стандарты.

Гибридный двигатель

На одних ДВС для получения необходимой мощности используется в комплексе с турбонаддувом, тогда как на других с точно таким же рабочим объемом и компоновкой такие решения отсутствуют.

По этой причине для объективной оценки производительности того или иного двигателя на разных оборотах, причем не на коленвалу, а на колесах, необходимо проводить специальные комплексные замеры на динамометрическом стенде.

Читайте также

Усовершенствание конструкции поршневого двигателя, отказ от КШМ: бесшатунный двигатель, а также двигатель без коленвала. Особенности и перспективы.

  • Моторы линейки TSI. Конструктивные особенности, преимущества и недостатки. Модификации с одним и двумя нагнетателями. Рекомендации по эксплуатации.


  • ДВС - это двигатель, работающий по принципу сжигания различного топлива непосредственно внутри самого агрегата. В отличие от двигателей другого типа, ДВС лишены: любых элементов передающих тепло для дальнейшего преобразования в механическую энергию, преобразование происходит непосредственно от сгорания топлива; значительно компактнее; имеют малый вес относительно агрегатов другого типа со сравнимой мощностью; требуют использования определенного топлива с жесткими характеристиками температуры горения, степени испаряемости, октановым числом и т. д.

    В автомобилестроении применяются четырехтактные моторы:

    1. Впуск;

    2. Сжатие;

    3. Рабочий ход;

    4. Выпуск.
    Но существуют и двухтактные версии двигателей внутреннего сгорания, но в современном мире, они имеют ограниченное применение.

    В данной статье будут рассмотрены только моторы, устанавливающиеся на автомобили.

    Разновидности двигателей по использующемуся топливу

    Бензиновые моторы, как понятно из названия используют в качестве топлива для работы - бензин с различным октановым числом, и имеют систему принудительного поджига топливной смеси при помощи электрической искры.

    Могут разделяться по типу впуска на карбюраторные и инжекторные. Карбюраторные моторы уже пропадают из производства из-за сложности в точной настройке, высокого потребления бензина, неэффективности смешивания топливной смеси и несоответствия современным жестким экологическим требованиям. В таких моторах, смешивание горючей смеси начинается в камерах карбюратора и заканчивается по пути во впускном коллекторе.


    Инжекторные агрегаты развиваются большими темпами, и система впрыска топлива улучшается с каждым поколением. Первые инжектора имели «моновпрыск» с единственной форсункой. По сути, это была модернизация карбюраторных моторов. Со временем, на большинстве агрегатов, начали использоваться системы с отдельными форсунками на каждый цилиндр. Использование форсунок в системе впуска, позволило точнее контролировать пропорции топлива и воздуха в разных режимах работы агрегата, снизить расход топлива, увеличить качество топливной смеси, увеличить мощность и экологичность силовых агрегатов.

    Современные форсунки, устанавливающиеся на силовые агрегаты с системой непосредственного впрыска топлива в цилиндры, способны производить несколько отдельных впрысков топлива за один такт. Это позволяет еще улучшить качество топливной смеси и добиваться максимальной отдачи энергии от используемого количества бензина. То есть, еще больше увеличилась экономия и производительность моторов.


    Дизельные агрегаты - используют принцип воспламенения смеси дизельного топлива и воздуха при нагреве от сильного сжатия. При этом, в дизельных агрегатах не используются системы принудительного поджига. Данные моторы имеют ряд преимуществ перед бензиновыми, в первую очередь - это экономность топлива (до 20%), при сравнительной мощности. Топливо меньше расходуется из-за большей степени сжатия в цилиндрах, что улучшает характеристики горения и отдачи энергии топливной смеси, а следовательно, и топлива необходимо меньшее количество для достижения таких же результатов. Кроме этого, дизельные агрегаты не используют дроссельные заслонки, что улучшает поступление воздуха в силовой агрегат, что еще уменьшает расход топлива. Дизеля развивают больший крутящий момент, и на более низких оборотах коленчатого вала.

    Не обошлось без недостатков. Из-за увеличенной нагрузки на стенки цилиндров, конструкторам пришлось использовать более надежные материалы, и увеличивать размеры конструкции (увеличение веса и удорожание производства). Кроме этого, работа дизельного силового агрегата - громкая из-за особенностей воспламенения топлива. А увеличенная масса деталей не позволяет мотору развивать высокие обороты с такой же скоростью, как и бензиновые, и максимальное значение оборотов коленчатого вала - ниже, чем у бензиновых агрегатов.

    Разновидность ДВС по конструкции

    Гибридный силовой агрегат

    Данный тип автомобиля начала набирать популярность в последние года. Благодаря своей эффективности экономии топлива и увеличению общей мощности автомобиля благодаря комбинированию двух типов агрегатов. По сути, данная конструкция представляет собой два отдельных агрегата - небольшой ДВС (чаще всего дизельный) и электромотор (или несколько электромоторов) с аккумуляторной батареей большой емкости.

    Преимущества комбинирования выражаются в способности совмещать энергию двух агрегатов при разгоне, или использование каждого типа двигателя по отдельности, в зависимости от необходимости. К примеру, при движении в городской пробке - может работать только электродвигатель, экономя дизельное топливо. При движении по загородным дорогам, работает ДВС, как более выносливый, мощный и с большим запасом хода агрегат.

    При этом, специальная батарея для электромоторов, способна подзарядиться от генератора, или используя систему рекуперации при торможении, что позволяет экономить не только топливо, но и электричество, необходимое для зарядки батареи.

    Роторно-поршневой мотор

    Роторно-поршневой мотор построен по уникальной схеме движения поршня-ротора, который перемещается внутри цилиндра не по возвратно-поступательной траектории, а вокруг своей оси. Это осуществляется благодаря особой треугольной конструкции поршня и особенному расположению впускных и выпускных отверстий в цилиндре.

    Благодаря такой конструкции, двигатель быстро набирает обороты, что увеличивает динамические характеристики автомобиля. Но с развитием классической конструкции ДВС, двигателя Ванкеля начали терять свою актуальность из-за конструктивных ограничений. Принцип движения поршня не позволяет добиться большой степени сжатия топливной смеси, что исключает использование дизельного топлива. А малый ресурс, сложность обслуживания и ремонта, а также - слабые экологические показатели не позволяют автопроизводителям развивать данное направление.

    Разновидности силовых агрегатов по компоновке

    Из-за необходимости уменьшения веса и габаритов, а также, размещения большего числа поршней в одном агрегате привело к появлению разновидностей моторов по компоновке.

    Рядные моторы


    Рядный двигатель - это самый классический вариант силового агрегата. В котором все поршни и цилиндры располагаются в один ряд. При этом, современные моторы с рядной компоновкой вмещают в себе не более шести цилиндров. Но именно шестицилиндровые рядные двигатели, имеют наилучшие показатели по уравновешиванию вибрации при работе. Единственный минус - это значительная длина мотора, относительно других компоновок.

    V-образные моторы



    Данные моторы появились в следствии желания конструкторов уменьшить габариты двигателей, и необходимости разместить более шести поршней в одном блоке. В данных моторах, цилиндры находятся в разных плоскостях. Визуально, расположение цилиндров образует букву «V», откуда и пошло название. Угол между двумя рядами называется углом развала, и варьируется в широком диапазоне, разделяя данный тип моторов на подгруппы.

    Оппозитные моторы



    Оппозитные двигателя, получили максимальный угол развала в 180 градусов. Что позволило конструкторам снизить высоту агрегата до минимальных размеров, и распределить нагрузку на коленчатый вал, увеличивая его ресурс.

    VR моторы



    Это комбинация свойств рядных и V-образных агрегатов. Угол развала в таких двигателях достигает 15 градусов, что позволяет использовать одну головку блока цилиндров с единым механизмом газораспределения.

    W-образные моторы



    Одни из самых мощных и «экстремальных» конструкций ДВС. Могут иметь три ряда цилиндров с большим углом развала, или два совмещенных VR блока. На сегодняшний день, распространение получили моторы на восемь и двенадцать цилиндров, но конструкция позволяет использовать и большее количество цилиндров.

    Характеристики двигателя внутреннего сгорания

    Просмотрев множество информации про различные автомобили, любой интересующийся человек, увидит определенные основные параметры мотора:

    Мощность силового агрегата, измеряющуюся в л.с. (или кВт*ч);

    Максимальный крутящий момент развиваемый силовым агрегатом, измеряющийся в Н/м;

    Большинство автолюбителей, разделяют силовые агрегаты, только по мощности. Но данное разделение не совсем верное. Безусловно, агрегат в 200 «лошадей», предпочтительнее двигателя в 100 «лошадей» на тяжелом кроссовере. А для легкого городского хэтчбека, хватит и 100 сильного мотора. Но есть некоторые нюансы.

    Максимальная мощность, указанная в технической документации, достигается при определенных оборотах коленвала. Но используя автомобиль в городских условиях, водитель редко раскручивает мотор выше 2 500 оборотов в минуту. Поэтому, большее время эксплуатации машины, задействована только часть потенциальной мощности.

    Но, часто, бывают случаи на дороге. Когда необходимо резко увеличить скорость для обгона, или для ухода от аварийной ситуации. Именно максимальный крутящий момент влияет на способность агрегата быстро набрать требуемые обороты и мощность. Если сказать проще, крутящий момент влияет на динамику автомобиля.

    Стоит отметить небольшую разницу между бензиновыми и дизельными моторами. Двигатель работающий на бензине - выдает максимальный крутящий момент при оборотах коленчатого вала от 3 500 до 6 000 в минуту, а дизельные моторы могут достигать максимальных параметров при более низких оборотах. Поэтому, многим кажется. Что дизельные агрегаты мощнее и лучше «тянут». Но, большинство самых мощных агрегатов используют бензиновое топливо, так как они способны развить большее число оборотов в минуту.


    А для подробного понимания термина крутящий момент, следует посмотреть на единицы его измерения: Ньютоны умноженные на метры. Другими словами, крутящий момент определяет силу, с которой поршень давит на коленчатый вал, а тот в свою очередь передает мощность на коробку передач, и в конечном итоге - на колеса.

    Также, можно упомянуть про мощную технику, у которой максимальный крутящий момент может достигаться при оборотах в 1 500 в минуту. В основном - это трактора, мощные самосвалы, и некоторые дизельные вездеходы. Естественно, таким машинам нет необходимости раскручивать мотор до максимальных значений оборотов.


    Основываясь на приведенной информации, можно сделать вывод, что крутящий момент зависит от объема силового агрегата, его габаритов, размеров деталей и их веса. Чем тяжелее все эти элементы, тем более преобладает крутящий момент на низких оборотах. Дизельные агрегаты имеют больший крутящий момент и меньшие обороты коленчатого вала (большая инертность тяжелого коленвала и других элементов не позволяют развивать больших оборотов).

    Мощность автомобильного двигателя

    Стоит признать, что мощность и крутящий момент - это взаимосвязанные параметры, зависящие друг от друга. Мощность - это определенное количество работы, произведенная мотором за время. В свою очередь, работа мотора - это крутящий момент. Поэтому, мощность характеризуется как количество крутящего момента за единицу времени.

    Существует известная формула, характеризующая отношение мощности и крутящего момента:

    Мощность = крутящий момент * обороты в минуту / 9549

    В итоге, получим значение мощности в киловаттах. Но естественно, просматривая характеристики автомобилей, нам привычнее видеть показатели в «л.с.». Для перевода киловатт в л.с. необходимо умножить получившееся значение на 1,36.

    Вывод

    Как стало понятно из данной статьи, автомобильные двигатели внутреннего сгорания могут иметь множество отличий друг от друга. А выбирая автомобиль для постоянного использования - необходимо изучить все нюансы конструкции, характеристик, экономности, экологичности, мощности и надежности силового агрегата. Также, будет полезно изучить информацию о ремонтопригодности мотора. Так как многие современные агрегаты используют сложные системы газораспределения, впрыска топлива и выхлопа, что может усложнить их ремонт.

    Это вступительная часть цикла статей посвящённых Двигателю Внутреннего Сгорания , являющаяся кратким экскурсом в историю, повествующая об эволюции ДВС. Так же, в статье будут затронуты первые автомобили.

    В следующих частях будут подробно описаны различные ДВС:

    Шатунно-поршневые
    Роторные
    Турбореактивные
    Реактивные

    Двигатель был установлен на лодку, которая смогла подняться вверх по течению реки Сона . Спустя год, после испытаний, братья получили патент на своё изобретение, подписаный Наполеоном Бонопартом, сроком на 10 лет.

    Правильнее всего, было бы назвать этот двигатель реактивным, так как его работа заключалась в выталкивании воды из трубы находящейся под днищем лодки…

    Двигатель состоял из камеры поджигания и камеры сгорания, сильфона для нагнетания воздуха, топливо-раздаточного устройства и устройства зажигания. Топливом для двигателя служила угольная пыль.

    Сильфон впрыскивал струю воздуха смешанную с угольной пылью в камеру поджигания где тлеющий фитиль зажигал смесь. После этого, частично подожжённая смесь (угольная пыль горит относительно медленно) попадала в камеру сгорания где полностью прогорала и происходило расширение.
    Далее давление газов выталкивало воду из выхлопной трубы, что заставляло лодку двигаться, после этого цикл повторялся.
    Двигатель работал в импульсном режиме с частотой ~12 и/минуту.

    Спустя некоторое время, братья усовершенствовали топливо добавив в него смолу, а позже заменили его нефтью и сконструировали простую систему впрыска .
    В течении следующих десяти лет проект не получил никакого развития. Клод уехал в Англию с целью продвижения идеи двигателя, но растратил все деньги и ничего не добился, а Джозеф занялся фотографией и стал автором первой в мире фотографии «Вид из окна» .

    Во Франции, в доме-музее Ньепсов, выставлена реплика «Pyreolophore».

    Чуть позже, де Рива водрузил свой двигатель на четырёхколёсную повозку, которая, по мнению историков, стала первым автомобилем с ДВС.

    Про Алессандро Вольта

    Вольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока («Вольтов столб») .

    В 1776 г. Вольта изобрел газовый пистолет - «пистолет Вольты», в котором газ взрывался от электрической искры.

    В 1800 году построил химическую батарею, что позволило получать электричество с помощью химических реакций.

    Именем Вольты названа единица измерения электрического напряжения - Вольт.


    A - цилиндр, B - «свеча» зажигания, C - поршень, D - «воздушный» шар с водородом, E - храповик, F - клапан сброса отработанных газов, G - рукоятка для управления клапаном.

    Водород хранился в «воздушном» шаре соединённым трубой с цилиндром. Подача топлива и воздуха, а так же поджиг смеси и выброс отработанных газов осуществлялись вручную, с помощью рычагов.

    Принцип работы:

    Через клапан сброса отработанных газов в камеру сгорания поступал воздух.
    Клапан закрывался.
    Открывался кран подачи водорода из шара.
    Кран закрывался.
    Нажатием на кнопку подавался электрический разряд на «свечу».
    Смесь вспыхивала и поднимала поршень вверх.
    Открывался клапан сброса отработанных газов.
    Поршень падал под собственным весом (он был тяжёлый) и тянул верёвку, которая через блок поворачивала колёса.

    После этого цикл повторялся.

    В 1813 году де Рива построил ещё один автомобиль. Это была повозка длиной около шести метров, с колесами двухметрового диаметра и весившея почти тонну.
    Машина смогла проехать 26 метров с грузом камней (около 700 фунтов) и четырьмя мужчинами, со скоростью 3 км/ч.
    С каждым циклом, машина перемещалась на 4-6 метров.

    Мало кто из его современников серьезно относился к этому изобретению, а Французская Академия Наук утверждала, что двигатель внутреннего сгорания никогда не будет конкурировать по производительности с паровой машиной.

    В 1833 году , американский изобретатель Лемюэль Веллман Райт , зарегистрировал патент на двухтактный газовый двигатель внутреннего сгорания с водяным охлаждением.
    (см. ниже) в своей книге «Gas and Oil Engines» написал о двигателе Райта следующее:

    «Чертеж двигателя весьма функционален, а детали тщательно проработаны. Взрыв смеси действует непосредственно на поршень, который через шатун вращает кривошипный вал. По внешнему виду двигатель напоминает паровую машину высокого давления, в которой газ и воздух подаются с помощью насосов из отдельных резервуаров. Смесь, находящаяся в сферических ёмкостях поджигалась во время подъёма поршня в ВМТ (верхняя мёртвая точка) и толкала его вниз/вверх. В конце такта открывался клапан и выбрасывал выхлопные газы в атмосферу.»

    Неизвестно, был ли когда-либо этот двигатель построен, однако есть его чертёж:

    В 1838 году , английский инженер Уильям Барнетт получил патент на три двигателя внутреннего сгорания.

    Первый двигатель - двухтактный одностороннего действия (топливо горело только с одной стороны поршня) с отдельными насосами для газа и воздуха. Поджиг смеси происходил в отдельном цилиндре, а потом горящая смесь перетекала в рабочий цилиндр. Впуск и выпуск осуществлялся через механические клапана.

    Второй двигатель повторял первый, но был двойного действия, то есть горение происходило попеременно с обоих сторон поршня.

    Третий двигатель, так же был двойного действия, но имел впускные и выпускные окна в стенках цилиндра открывающееся в момент достижения поршнем крайней точки (как в современных двухтактниках). Это позволяло автоматически выпускать выхлопные газы и впускать новый заряд смеси.

    Отличительной особенностью двигателя Барнетта было то, что свежая смесь сжималась поршнем перед воспламенением.

    Чертёж одного из двигателей Барнетта:

    В 1853-57 годах , итальянские изобретатели Еугенио Барзанти и Феличе Маттеуччи разработали и запатентовали двухцилиндровый двигатель внутреннего сгорания мощность 5 л/с.
    Патент был выдан Лондонским бюро так как итальянское законодательство не могло гарантировать достаточную защиту.

    Строительство прототипа было поручено компании «Bauer & Co. of Milan» (Helvetica) , и завершено в начале 1863 года. Успех двигателя, который был гораздо более эффективным чем паровая машина, оказался настолько велик, что компания стала получать заказы со всего света.

    Ранний, одноцилиндровый двигатель Барзанти-Маттеуччи:

    Модель двухцилиндрового двигателя Барзанти-Маттеуччи:

    Маттеуччи и Барзанти заключили соглашение на производство двигателя с одной из бельгийских компаний. Барзанти отбыл в Бельгию для наблюдения за работой лично и внезапно умер от тифа. Со смертью Барзанти все работы по двигателю были прекращены, а Маттеуччи вернулся к своей прежней работе в качестве инженера-гидравлика.

    В 1877 году, Маттеуччи утверждал, что он с Барзанти были главными создателями двигателя внутреннего сгорания, а двигатель построенный Августом Отто очень походил на двигатель Барзанти-Маттеуччи.

    Документы касающиеся патентов Барзанти и Маттеуччи хранятся в архиве библиотеки Museo Galileo во Флоренции.

    Самым главным изобретением Николауса Отто был двигатель с четырёхтактным циклом - циклом Отто . Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

    Четырёхтактный цикл был самым большим техническим достижением Отто, но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша (см. выше) . Группа французских промышленников оспорила патент Отто в суде, суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.

    Не смотря на то, что конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним опытом модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область их применения.
    Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два - в Москве и Петербурге.

    В 1865 году , французкий изобретатель Пьер Хьюго получил патент на машину представлявшую собой вертикальный одноцилиндровый двигатель двойного действия, в котором для подачи смеси использовались два резиновых насоса, приводимых в действие от коленчатого вала.

    Позже Хьюго сконструировал горизонтальный двигатель схожий с двигателем Ленуара.

    Science Museum, London.

    В 1870 году , австро-венгерский изобретатель Сэмюэль Маркус Зигфрид сконструировал двигатель внутреннего сгорания работающий на жидком топливе и установил его на четырёхколёсную тележку.

    Сегодня этот автомобиль хорошо известен как «The first Marcus Car».

    В 1887 году, в сотрудничестве с компанией «Bromovsky & Schulz», Маркус построил второй автомобиль - «Second Marcus Car».

    В 1872 году , американский изобретатель запатентовал двухцилиндровый двигатель внутреннего сгорания постоянного давления, работающий на керосине.
    Брайтон назвал свой двигатель «Ready Motor».

    Первый цилиндр выполнял функцию компрессора, нагнетавшего воздух в камеру сгорания, в которую непрерывно поступал и керосин. В камере сгорания смесь поджигалась и через золотниковый механизм поступало во второй - рабочий цилиндр. Существенным отличием от других двигателей, было то, что топливовоздушная смесь сгорала постепенно и при постоянном давлении.

    Интересующиеся термодинамическими аспектами двигателя, могут почитать про «Цикл Брайтона» .

    В 1878 году , шотландский инженер Сэр (в 1917 году посвящён в рыцари) разработал первый двухтактный двигатель с воспламенением сжатой смеси. Он запатентовал его в Англии в 1881 году.

    Двигатель работал любопытным образом: в правый цилиндр подавался воздух и топливо, там оно смешивалось и эта смесь выталкивалась в левый цилиндр, где и происходило поджигание смеси от свечи. Происходило расширение, оба поршня опускались, из левого цилиндра (через левый патрубок) выбрасывались выхлопные газы, а в правый цилиндр всасывалась новая порция воздуха и топлива. Следуя по инерции поршни поднимались и цикл повторялся.

    В 1879 году , построил вполне надежный бензиновый двухтактный двигатель и получил на него патент.

    Однако настоящий гений Бенца проявился в том, что в последующих проектах он сумел совместить различные устройства (дроссель, зажигание с помощью искры с батареи, свеча зажигания, карбюратор, сцепление, КПП и радиатор) на своих изделиях, что в свою очередь стало стандартом для всего машиностроения.

    В 1883 году, Бенц основал компанию «Benz & Cie» по производству газовых двигателей и в 1886 году запатентовал четырехтактный двигатель, который он использован на своих автомобилях.

    Благодаря успеху компании «Benz & Cie», Бенц смог заняться проектированием безлошадных экипажей. Совместив опыт изготовления двигателей и давнишнее хобби - конструирование велосипедов, к 1886-му году он построил свой первый автомобиль и назвал его "Benz Patent Motorwagen ".


    Конструкция сильно напоминает трехколёсный велосипед.

    Одноцилиндровый четырёхтактный двигатель внутреннего сгорания рабочим объёмом 954 см3., установленный на "Benz Patent Motorwagen ".

    Двигатель был оснащён большим маховиком (использовался не только для равномерного вращения, но и для запуска) , бензобаком на 4,5 л., карбюратором испарительного типа и золотниковым клапаном, через который топливо поступало в камеру сгорания. Воспламенение производилось свечой зажигания собственной конструкции Бенца, напряжение на которую подавалось от катушки Румкорфа .

    Охлаждение было водяным, но не замкнутого цикла, а испарительным. Пар уходил в атмосферу, так что заправлять автомобиль приходилось не только бензином, но и водой.

    Двигатель развивал мощность 0,9 л.с. при 400 об/мин и разгонял автомобиль до 16 км/ч.

    Карл Бенц за «рулём» своего авто.

    Чуть позже, в 1896 году, Карл Бенц изобрел оппозитный двигатель (или плоский двигатель) , в котором поршни достигают верхней мертвой точки в одно и то же время, тем самым уравновешивая друг друга.

    Музей «Mercedes-Benz» в Штутгарте.

    В 1882 году , английский инженер Джеймс Аткинсон придумал цикл Аткинсона и двигатель Аткинсона.

    Двигатель Аткинсона - это по существу двигатель, работающий по четырёхтактному циклу Отто , но с измененным кривошипно-шатунным механизмом. Отличие заключалось в том, что в двигателе Аткинсона все четыре такта происходили за один оборот коленчатого вала.

    Использование цикла Аткинсона в двигателе позволяло уменьшить потребление топлива и снизить уровень шума при работе за счёт меньшего давления при выпуске. Кроме того, в этом двигателе не требовалось редуктора для привода газораспределительного механизма, так как открытие клапанов приводил в движение коленчатый вал.

    Не смотря на ряд преимуществ (включая обход патентов Отто) двигатель не получил широкого распространения из-за сложности изготовления и некоторых других недостатков.
    Цикл Аткинсона позволяет получить лучшие экологические показатели и экономичность, но требует высоких оборотов. На малых оборотах выдаёт сравнительно малый момент и может заглохнуть.

    Сейчас двигатель Аткинсона применяется на гибридных автомобилях «Toyota Prius» и «Lexus HS 250h».

    В 1884 году , британский инженер Эдвард Батлер , на лондонской выставке велосипедов "Stanley Cycle Show " продемонстрировал чертежи трёхколёсного автомобиля с бензиновым двигателем внутреннего сгорания , а в 1885 году построил его и показал на той же выставке, назвав «Velocycle». Так же, Батлер был первым кто использовал слово бензин .

    Патент на «Velocycle» был выдан в 1887 году.

    На «Velocycle» был установлен одноцилиндровый, четырёхтактный бензиновый ДВС оснащенный катушкой зажигания, карбюратором, дросселем и жидкостным охлаждением. Двигатель развивал мощность около 5 л.с. при объёме 600 см3, и разгонял автомобиль до 16 км/ч.

    На протяжении многих лет Батлер улучшал характеристики своего транспортного средства, но был лишен возможности его тестировать из-за "Закона Красного Флага " (издан в 1865 году) , согласно которому транспортные средства не должны были превышать скорость свыше 3 км/ч. Кроме того, в автомобиле должны были присутствовать три человека, один из которых должен был идти перед автомобилем с красным флагом (такие вот меры безопасности) .

    В журнале «Английский Механик» от 1890 года, Батлер написал - «Власти запрещают использование автомобиля на дорогах, в следствии чего я отказываюсь от дальнейшего развития.»

    Из-за отсутствия общественного интереса к автомобилю, Батлер разобрал его на металлолом, и продал патентные права Гарри Дж. Лоусону (производителю велосипедов) , который продолжил производство двигателя для использования на катерах.

    Сам же Батлер перешёл к созданию стационарных и судовых двигателей.

    В 1891 году , Герберт Эйкройд Стюарт в сотрудничестве с компанией "Richard Hornsby and Sons " построил двигатель «Hornsby-Akroyd», в котором топливо (керосин) под давлением впрыскивалось в дополнительную камеру (из-за формы её называли «горячий шарик») , установленную на головке блока цилиндров и соединённую с камерой сгорания узким проходом. Топливо воспламенялось от горячих стенок дополнительной камеры и устремлялось в камеру сгорания.


    1. Дополнительная камера (горячий шарик) .
    2. Цилиндр.
    3. Поршень.
    4. Картер.

    Для запуска двигателя использовалась паяльная лампа, которой нагревали дополнительную камеру (после запуска она подогревалась выхлопными газами) . Из-за этого двигатель «Hornsby-Akroyd», который был предшественником дизельного двигателя сконструированного Рудольфом Дизелем , часто называли «полу-дизелем». Однако спустя год Эйкройд усовершенствовал свой двигатель добавив к нему «водяную рубашку» (патент от 1892 г.), что позволило повысить температуру в камере сгорания за счёт увеличения степени сжатия, и теперь уже не было необходимости в дополнительном источнике нагрева.

    В 1893 году , Рудольф Дизель получил патенты на тепловой двигатель и модифицированный "цикл Карно " под названием «Метод и аппарат для преобразования высокой температуры в работу».

    В 1897 году, на «Аугсбургском машиностроительном заводе» (с 1904 года MAN) , при финансовом участии компаний Фридриха Круппа и братьев Зульцер, был создан первый функционирующий дизель Рудольфа Дизеля
    Мощность двигателя составляла 20 лошадиных сил при 172 оборотах в минуту, КПД 26,2 % при весе пять тонн.
    Это намного превосходило существующие двигатели Отто с КПД 20 % и судовые паровые турбины с КПД 12 %, что вызвало живейший интерес промышленности в разных странах.

    Двигатель Дизеля был четырёхтактным. Изобретатель установил, что КПД двигателя внутреннего сгорания повышается от увеличения степени сжатия горючей смеси. Но сильно сжимать горючую смесь нельзя, потому что тогда повышаются давление и температура и она самовоспламеняется раньше времени. Поэтому Дизель решил сжимать не горючую смесь, а чистый воздух и концу сжатия впрыскивать топливо в цилиндр под сильным давлением.
    Так как температура сжатого воздуха достигала 600-650 °C, топливо самовоспламенялось, и газы, расширяясь, двигали поршень. Таким образом Дизелю удалось значительно повысить КПД двигателя, избавиться от системы зажигания, а вместо карбюратора использовать топливный насос высокого давления
    В 1933 году Эллинг пророчески писал: «Когда я начал работать над газовой турбиной в 1882 году, я был твёрдо уверен в том, что моё изобретение будет востребовано в авиастроении.»

    К сожалению, Эллинг умер в 1949 году, так и не дожив до наступления эры турбореактивной авиации.

    Единственное фото, которое удалось найти.

    Возможно кто-то найдёт что-либо об этом человеке в "Норвежском музее техники ".

    В 1903 году , Константин Эдуардович Циолковский , в журнале «Научное обозрение» опубликовал статью «Исследование мировых пространств реактивными приборами », где впервые доказал, что аппаратом, способным совершить космический полёт, является ракета. В статье был предложен и первый проект ракеты дальнего действия. Корпус её представлял собой продолговатую металлическую камеру, снабжённую жидкостным реактивным двигателем (который тоже является двигателем внутреннего сгорания) . В качестве горючего и окислителя он предлагал использовать соответственно жидкие водород и кислород.

    Наверное на этой ракетно-космической ноте и стоит закончить историческую часть, так как наступил 20-ый век и Двигатели Внутреннего Сгорания стали производиться повсеместно.

    Философское послесловие…

    К.Э. Циолковский полагал, что в обозримом будущем люди научатся жить если не вечно, то по крайней мере очень долго. В связи с этим на Земле будет мало места (ресурсов) и потребуются корабли для переселения на другие планеты. К сожалению, что-то в этом мире пошло не так, и с помощью первых ракет люди решили просто уничтожать себе подобных...

    Спасибо всем кто прочитал.

    Все права защищены © 2016
    Любое использование материалов допускается только с указанием активной ссылки на источник.


    К атегория:

    Общие сведения об автогрейдерах



    -

    Принцип работы двигателя внутреннего сгорания


    Двигателем внутреннего сгорания (ДВС) называется такой поршневой тепловой двигатель, в котором тепловая энергия, возникающая в цилиндрах при сгорании горючей смеси, преобразуется в механическую за счет воздействия на поршни газообразных продуктов сгорания, обладающих высоким давлением и температурой (до 2400° С и 8 МПа). При этом поршни, перемещаясь под давлением продуктов сгорания, приводят во вращение через кривошипно-шатунный механизм коленчатый вал двигателя, а от него - трансмиссию машины.

    Принципиальная схема ДВС представлена на рис. 6.1. Из нее видно, что поршень может перемещаться в цилиндре из крайнего верхнего положения, или верхней мертвой точки (ВМТ), в крайнее нижнее положение, или до нижней мертвой точки (НМТ), на расстояние, соответствующее ходу поршня.

    От НМТ поршень может перемещаться только вверх до ВМТ. Таким образом, двойной ход поршня (вниз и вверх) соответствует полному обороту вала. Значит, если обеспечить своевременное попадание в цилиндр горючей смеси, ее сжатие и сгорание, а затем удаление продуктов сгорания и новое заполнение цилиндра горючей смесью, можно добиться постоянного вращения коленчатого вала двигателя. На этом основана работа ДВС. А сама совокупность повторяющихся в определенной последовательности процессов впуска горючей смеси, ее сжатия, сгорания с последующим расширением и выпуска продуктов сгорания в атмосферу носит название рабочего цикла ДВС. Часть рабочего цикла, соответствующая перемещению поршня из одного крайнего положения в другое, называется тактом.



    -

    Если полный рабочий цикл ДВС совершается за четыре такта (4 хода поршня), т. е. за два полных обо рота коленчатого вала, то такой двигатель называется четырехтактным; если же рабочий цикл состоит из двух тактов (2 хода поршня), то двигатель считается двухтактным. На рис. 6.1 видно, что полость цилиндра сообщается с внешней средой с помощью двух отверстий, закрываемых клапанами или другим образом. Одно из отверстий является впускным и предназначено для впуска горючей смеси или воздуха, другое - выпускным и служит для выпуска продуктов сгорания. Впускное и выпускное отверстия могут либо полностью перекрываться, либо закрываться попеременно.

    Когда поршень занимает крайнее верхнее положение, над ним остается свободное пространство объемом Ус, которое является так называемой камерой сгорания. При перемещении поршня в НМТ в цилиндре освобождается объем Ур, называемый рабочим, который вместе с объемом камеры сгорания Vc образует полный объем цилиндра: V„= Ус+ Vp. Таким образом, поршень, перемещаясь в обратном направлении от НМТ до ВМТ, изменяет объем цилиндра с V„ до VQ, т. е. многократно сжимает газообразные вещества. Поэтому отношение полного объема цилиндра V„ к объему камеры сгорания VQ показывает так называемую степень сжатия в цилиндре е= Vn/Vc, т. е. величину сжатия горючей смеси в момент ее воспламенения. Эта величина зависит от конструкции ДВС. Так, у дизельных двигателей она достигает величины 14…22, а у карбюраторных 6… 10. Когда рабочий объем одного цилиндра Vp умножается на их число, получается рабочий объем двигателя Ул.

    Рис. 6.1. Принципиальная схема ДВС

    В зависимости от вида применяемого топлива ДВС могут быть дизельными (используется дизельное топливо) и карбюраторными (топливом являются бензин, газ). На автогрейдерах основными двигателями являются многоцилиндровые четырехтактные дизельные двигатели, в качестве пусковых на них используются одноцилиндровые двухтактные бензиновые двигатели. В общем, принципы работы дизельных и карбюраторных двигателей подобны. Основное отличие состоит в том, что в карбюраторных двигателях для воспламенения рабочей смеси (смеси паров топлива, воздуха, остаточных газов) в цилиндрах используется специальная электрическая система зажигания, а на дизельных двигателях - воспламенение топлива, впрыскиваемого под высоким давлением в камеру сгорания, происходит от высокой температуры воздуха, превышающей температуру вспышки смеси топлива и воздуха, сжатого в камере сгорания поршнем. Кроме того, в дизельных двигателях вначале цилиндры наполняются воздухом, а не горючей смесью (смесь мелкораспыленного жидкого или газообразного топлива с воздухом), как у карбюраторных, и сжимается воздух, а не горючая смесь (поэтому-то степень сжатия, температура и давление в цилиндрах у дизельных двигателей выше, чем у карбюраторных). В связи с этим для дизельных двигателей требуется специальная система впрыска топлива под давлением, в то время как у карбюраторных двигателей горючая смесь поступает за счет разрежения, создаваемого поршнями.

    Принцип работы четырехтактного дизельного двигателя. Первый такт - впуск воздуха (рис. 6.2, а) производится при движении поршня от ВМТ до НМТ за счет создаваемого в цилиндре разрежения через открытый впускной клапан, который открывается с опережением до прихода поршня в ВМТ и закрывается с запаздыванием после достижения поршнем НМТ.

    Рис. 6.2. Принцип работы четырехтактного дизельного двигателя: а - первый такт - впуск воздуха; 6 - второй такт - сжатие воздуха; в - третий такт - рабочий ход; 4- четвертый такт - выпуск отработавших газов; 1 - коленчатый вал; 2 - шатун; 3 - поршень; 4 - впускной клапан; 5 - форсунка; 6 - выпускной клапан; 7 - цилиндр

    Второй такт - сжатие воздуха (рис. 6.2,6) происходит при движении поршня от НМТ к ВМТ при закрытых впускном и выпускном клапанах. В конце сжатия давление воздуха достигает 3…4 МПа при температуре выше 500° С. В момент, когда поршень несколько не доходит до ВМТ, с помощью форсунки производится впрыск топлива под давлением 20…40 МПа. В нагретом воздухе распыленное топливо самовоспламеняется и сгорает.

    Третий такт - рабочий ход (рис. 6.2,в) происходит при заканчивающемся сгорании топлива и расширении продуктов сгорания, сопровождающемся перемещением поршня от ВМТ к НМТ. С целью лучшей последующей очистки полости цилиндра от отработавших газов выпускной клапан открывается до момента подхода поршня в НМТ.

    Четвертый такт - выпуск отработавших газов (рис. 6.2, г) производится при движении поршня от НМТ к ВМТ, когда выпускной клапан открыт. После этого рабочий цикл двигателя повторяется.

    Принцип работы двухтактного карбюраторного двигателя. В отличие от дизельного двигателя для образования горючей смеси в нем использован карбюратор, а система зажигания со свечой, вставленной в головку цилиндра, служит для зажигания горючей смеси (рис. 6.3). В отличие от четырехтактного карбюраторного двигателя в двухтактном двигателе с кривошип- но-камерной продувкой отсутствуют клапаны, а впускное и выпускное отверстия перекрываются самим поршнем. Кроме того, имеется продувочное отверстие и для подачи горючей смеси от карбюратора в цилиндр используется герметичный картер двигателя.

    В одном такте двухтактного двигателя сосредоточены не один, а два описанных выше процесса.

    Первый такт - рабочий ход поршня (рис. 6.3, а, б) начинается, когда поршень, перекрыв выпускное и продувочное отверстия и открыв впускное отверстие, подходит к ВМТ. Тогда срабатывает свеча, искра от которой воспламеняет сжатую рабочую смесь, в камере сгорания резко повышается температура и давление (до 2,5 МПа). Поршень, под давлением перемещаясь вниз, сначала закрывает впускное отверстие и начинает сжимать рабочую смесь в картере 8 двигателя, а затем открывает выпускное отверстие 2 и продувочное, через которые под давлением (0,1 МПа) рабочей смеси из картера производится удаление отработавших газов и продувка рабочей полости цилиндра. При этом отражатель, установленный на головке поршня, направляет рабочую смесь по всей полости цилиндра, способствуя его очистке от продуктов сгорания. Когда поршень достигает НМТ, начинается его движение вверх.

    Рис. 6.3. Принцип работы двухтактного карбюраторного двигателя: а - начало рабочего хода поршня; б-конец рабочего хода поршня; 1 - впускное отверстие; 2 - выпускное отверстие; 3 - шатун; 4 - цилиндр; 5 - поршень; 6 - свеча; 7 - продувочное отверстие; 8 - картер; 9-коленчатый вал; 10-карбюратор

    Второй такт - сжатие рабочей смеси начинается с продолжающегося удаления отработавших газов и впуска в надпоршневое пространство рабочей смеси. По мере движения поршня вверх сначала перекрывается продувочное отверстие, а затем и выпускное, после чего рабочая смесь сжимается в течение всего движения поршня до ВМТ. В тот момент, когда нижний край поршня открывает впускное отверстие, начинается впуск горючей смеси в полость картера (в подпоршневое пространство). Затем рабочий цикл повторяется.

    Принцип и особенности работы поршневых ДВС определили наличие у них следующих основных механизмов и систем: кривошипно-шатунный механизм, преобразующий возвратно-поступательное движение поршня под воздействием давления газов во вращательное движение коленчатого вала; механизм газораспределения, предназначенный для своевременного наполнения цилиндров горючей смесью или воздухом и выпуска отработавших газов в атмосферу; система смазки, предназначенная для очистки и подачи к трущимся сопряженным поверхностям двигателя необходимого для смазки и охлаждения этих поверхностей количества масла; система охлаждения, служащая для охлаждения всех нагреваемых деталей двигателя путем отвода от них тепла; система питания, предназначенная для подачи в цилиндры дозированного количества топлива или горючей смеси в распыленном состоянии; система зажигания (у карбюраторных двигателей), служащая для принудительного воспламенения рабочей смеси в цилиндрах; система пуска, предназначенная для быстрого и уверенного запуска двигателя при любых температурных условиях.

    Работу ДВС характеризует такой параметр, как эффективная мощность N3, являющаяся мощностью, снимаемой с коленчатого вала двигателя для производства полезной работы. Мощность указана в паспорте на двигатель. Кроме того, в паспорте дается и регуляторная характеристика двигателя, т. е. зависимости мощности и крутящего момента на валу двигателя от частоты его вращения.

    Последние материалы раздела:

    Смотреть что такое
    Смотреть что такое "душевный мир" в других словарях

    Энциклопедический словарь 1. МИР, а; мн. миры, ов; м. 1. Совокупность всех форм материи в земном и космическом пространстве; Вселенная....

    Наталья СтепановаМолитвенный щит
    Наталья СтепановаМолитвенный щит

    Все дело в том, дорогие мои, что Господь Бог наделил меня искренней любовью к людям. Этому меня учила и моя бабушка. Если говорить совсем кратко,...

    Сонник: к чему снится Лошадь
    Сонник: к чему снится Лошадь

    Во сне дано не каждому, ведь это сильное, свободолюбивое животное может запросто скинуть своего наездника. Сон, в котором сновидец скачет на...