Как устроен инжекторный двигатель. Инжектор: устройство, принцип работы и возможности ремонта

Сейчас практически на любом бензиновом моторе легкового автомобиля, используется инжекторная система питания, которая пришла на смену . Инжектор благодаря ряду рабочих характеристик превосходит карбюраторную систему, поэтому он является более востребованным.

Немного истории

Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

Что такое инжектор и чем он хорош

Инжектор дословно переводится как «впрыскивание», поэтому второе название его – система впрыска с помощью специальной форсунки. Если в карбюраторе топливо подмешивалось к воздуху за счет разрежения, создаваемого в цилиндрах мотора, то в инжекторном моторе бензин подается принудительно. Это самое кардинальное различие между карбюратором и инжектором.

Достоинствами инжекторного двигателя, относительно карбюраторных, такие:

  1. Экономичность расхода;
  2. Лучший выход мощности;
  3. Меньшее количество вредных веществ в выхлопных газах;
  4. Легкость пуска мотора при любых условиях.

И достигнуть этого всего удалось благодаря тому, что бензин подается порционно, в соответствии с режимом работы мотора. Из-за такой особенности в цилиндры мотора поступает топливовоздушная смесь в оптимальных пропорциях. В результате, практически на всех режимах работы силовой установки в цилиндрах происходит максимально возможное сгорание топлива с меньшим содержанием вредных веществ и повышенным выходом мощности.

Видео: Принцип работы системы питания инжекторного двигателя

Виды инжекторов

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электронные элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же .

Всего существует три типа инжекторных систем впрыска, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

1. Центральная

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

2. Распределенная

Распределенный впрыск топлива

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У такого типа инжекторных двигателей топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

3. Непосредственная

Система непосредственного впрыска топлива

Система непосредственного впрыска на данный момент – самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она сложная по конструкции и очень требовательна к качеству бензина.

Конструкция и принцип работы инжектора

Поскольку система распределенного впрыска – самая распространенная, то на именно на ее примере рассмотрим конструкцию и принцип работы инжектора.

Условно эту систему можно разделить на две части – механическую и электронную. Первую дополнительно можно назвать исполнительной, поскольку благодаря ей обеспечивается подача компонентов топливовоздушной смеси в цилиндры. Электронная же часть обеспечивает контроль и управление системой.

Механическая составляющая инжектора

Система питания автомобилей ВАЗ 2108, 2109, 21099

К механической части инжектора относится:

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Видео: Инжектор

Принцип работы инжектора

Что касается назначения каждого из них, то все просто. Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенной со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Раньше форсунки были полностью механическими, и срабатывали они от давления топлива. При достижении определенного значения давления топливо, преодолевая усилие пружины форсунки, открывало клапан подачи и впрыскивалось через распылитель.

Современная форсунка – электромагнитная. В ее основе лежит обычный соленоид, то есть проволочная обмотка и якорь. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Электронная составляющая

Основным элементом электронной части инжекторной системы подачи топлива является электронный блок, состоящий из контролера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  1. . Это датчик, который определяет остатки несгоревшего воздуха в выхлопных газах. На основе показаний лямбда-зонда ЭБУ оценивает как соблюдается смесеобразование в необходимых пропорциях. Устанавливается в выпускной системе авто.
  2. Датчик массового расхода воздуха (аббр. ДМРВ). Этим датчиком определяется количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами. Расположен в корпусе воздушного фильтрующего элемента;
  3. (аббр. ДПДЗ). Этот датчик подает сигнал о положении педали акселератора. Установлен в дроссельном узле;
  4. Датчик температуры силовой установки. На основе показаний этого элемента регулируется состав смеси в зависимости от температуры мотора. Располагается возле термостата;
  5. (аббр. ДПКВ). На основе показаний этого датчика определяется цилиндр, в который необходимо подать порцию топлива, время подачи бензина, и искрообразование. Установлен возле шкива коленчатого вала;
  6. . Необходим для выявления образования детонационного сгорания и принятия мер для его устранения. Расположен на блоке цилиндров;
  7. Датчик скорости. Нужен для создания импульсов, по которым высчитывается скорость движения авто. На основе его показаний делается корректировка топливной смеси. Установлен на коробке передач;
  8. Датчик фаз. Он предназначен для определения углового положения распредвала. На некоторых автомобилях может отсутствовать. При наличии этого датчика в двигателе выполняется фазированный впрыск, то есть, импульс на открытие поступает только для конкретной форсунки. Если этого датчика нет, то форсунки работают в парном режиме, когда сигнал на открытие подается сразу на две форсунки. Установлен в головке блока;

Теперь коротко от том, как все работает. Элекробензонасос заполняет всю систему топливом. Контролер получает показания от все датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

Что касается подачи топлива, то на основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Чтобы самому отремонтировать инжекторный автомобиль надо знать принцип работы и устройство, инжектор это автомобиль с системой впрыска топлива. Только зная принцип работы инжектора можно понять причину неисправности и устранить ее домашних условиях самому.

На автомобилях ВАЗ-21083, ВАЗ-21093 и ВАЗ-21099 в вариантном исполнении применяется система распределенного впрыска топлива на двигателях с рабочим объемом 1, 5л. Распределенным впрыск называется потому, что для каждого цилиндра топливо впрыскивается отдельной форсункой. Система впрыска топлива позволяет снизить токсичность отработавших газов при улучшении ездовых качеств автомобиля.

Существуют системы распределенного впрыска: с обратной связью и без нее. Причем обе системы могут быть с импортными комплектующими или отечественными. Все эти системы имеют свои особенности в устройстве, диагностике и в ремонте, которые подробно описаны в соответствующих отдельных Руководствах по ремонту конкретных систем впрыска топлива.

В настоящей главе дается только краткое описание общих принципов устройства, работы и диагностики систем впрыска топлива, порядок снятия-установки узлов, а также приводятся особенности ремонта самого двигателя.

Система с обратной связью применяется, в основном, на экспортных автомобилях. У нее в системе выпуска устанавливается нейтрализатор и датчик кислорода, который и обеспечивает обратную связь. Датчик отслеживает концентрацию кислорода в отработавших газах, а электронный блок управления по его сигналам поддерживает такое соотношение воздух/топливо, которое обеспечивает наиболее эффективную работу нейтрализатора.

В системе впрыска без обратной связи не устанавливаются нейтрализатор и датчик кислорода, а для регулировки концентрации СО в отработавших газах служит СО-потенциометр. В этой системе не применяется также система улавливания паров бензина.

ПРЕДУПРЕЖДЕНИЯ

1. Прежде чем снимать любые узлы системы управления впрыском, отсоедините провод от клеммы «-» аккумуляторной батареи.

2. Не пускайте двигатель, если наконечники проводов на аккумуляторной батарее плохо затянуты.

3. Никогда не отсоединяйте аккумуляторную батарею от бортовой сети автомобиля при работающем двигателе.

4. При зарядке аккумуляторной батареи отсоединяйте ее от бортовой сети, автомобиля.

5. Не подвергайте электронный блок управления (ЭБУ) температуре выше 65°С в рабочем состоянии и выше 80°С в нерабочем (например, в сушильной камере). Надо снимать ЭБУ с автомобиля, если эта температура будет превышена.

6. Не отсоединяйте от ЭБУ и не присоединяйте к нему разъемы жгута проводов при включенном зажигании.

7. Перед выполнением электродуговой сварки на автомобиле, отсоединяйте провода от аккумуляторной батареи и разъемы проводов от ЭБУ.

8. Все измерения напряжения выполняйте цифровым вольтметром с внутренним сопротивлением не менее 10 МОм.

9. Электронные узлы, применяемые в системе впрыска, рассчитаны на очень малое напряжение и поэтому легко могут быть повреждены электростатическим разрядом. Чтобы не допустить повреждений ЭБУ электростатическим разрядом:

Не прикасайтесь руками к штекерам ЭБУ или к электронным компонентам на его платах;

При работе с ППЗУ блока управления не дотрагивайтесь до выводов микросхемы.

Нейтрализатор

Токсичными компонентами отработавших газов являются углеводороды (несгоревшее топливо), окись углерода и окись азота. Для преобразования этих соединений в нетоксичные служит трехкомпонентный каталитический нейтрализатор, установленный в системе выпуска сразу за приемной трубой глушителей. Нейтрализатор применяется только в системе впрыска топлива с обратной связью.

В нейтрализаторе (рис. 9-33) находятся керамические элементы с микроканалами, на поверхности которых нанесены катализаторы: два окислительных и один восстановительный. Окислительные катализаторы (платина и палладий) способствуют преобразованию углеводородов в водяной пар, а окиси углерода в безвредную двуокись углерода. Восстановительный катализатор (родий) ускоряет химическую реакцию восстановления оксидов азота и превращения их в безвредный азот.

Для эффективной нейтрализации токсичных компонентов и наиболее полного сгорания воздушно-топливной смеси необходимо, чтобы на 14, 6-14, 7 частей воздуха приходилась 1 часть топлива.

Такая точность дозирования обеспечивается электронной системой впрыска топлива, которая непрерывно корректирует подачу топлива в зависимости от условий работы двигателя и сигнала от датчика концентрации кислорода в отработавших газах.

ПРЕДУПРЕЖДЕНИЕ.

Не допускается работа двигателя с нейтрализатором на этилированном бензине. Это приведет к быстрому выходу из строя нейтрализатора и датчика концентрации кислорода.

Рис. 9-33. Нейтрализатор:

1 - керамический блок с катализаторами

Электронный блок управления

Электронный блок управления (ЭБУ) 11 (рис. 9-34), расположенный под панелью приборов с правой стороны, является управляющим центром системы впрыска топлива. Этот блок называют еще контроллером. Он непрерывно обрабатывает информацию от различных датчиков и управляет системами, влияющими на токсичность отработавших газов и на эксплуатационные показатели автомобиля.

В блок управления поступает следующая информация:

О положении и частоте вращения коленчатого вала;

О массовом расходе воздуха двигателем;

О температуре охлаждающей жидкости;

О положении дроссельной заслонки;

О наличии детонации в двигателе;

О напряжении в бортовой сети автомобиля;

О скорости автомобиля;

О запросе на включение кондиционера (если он установлен на автомобиле).

На основе полученной информации блок управляет следующими системами и приборами:

Топливоподачей (форсунками и электробензонасосом);

Системой зажигания;

Регулятором холостого хода;

Адсорбером системы улавливания паров бензина (если - эта система есть на автомобиле);

Вентилятором системы охлаждения двигателя;

Муфтой компрессора кондиционера (если он есть на автомобиле);

Системой диагностики.

Рис. 9-34. Схема системы впрыска:

1 - воздушный фильтр; 2 - датчик массового расхода воздуха; 3 - шланг впускной трубы; 4 - шланг подвода охлаждающей жидкости; 5 - дроссельный патрубок; 6 - регулятор холостою хода; 7 - датчик положения дроссельной заслонки; 8 - канал подогрева системы холостого хода; 9 - ресивер; 10 - шланг регулятора давления; 11 - электронный блок управления; 12 - реле включения электробензонасоса; 13 - топливный фильтр; 14 - топливный бак: 15 - электробензонасос с датчиком уровня топлива; 16 - сливная магистраль; 17 - подающая магистраль; 18 - регулятор давления: 19 - впускная труба: 20 - рампа форсунок: 21 - форсунка; 22 -датчик скорости; 23 - датчик концентрации кислорода; 24 - газоприемник впускной трубы; 25 - коробка передач; 26 - головка цилиндров; 2 7 - выпускной патрубок системы охлаждения; "28 - датчик температуры охлаждающей жидкости; А - к подводящей трубе насоса охлаждающей жидкости

Блок управления включает выходные цепи (форсунки, различные реле, и т. д.) путем замыкания их на массу через выходные транзисторы блока управления. Единственное исключение - цепь реле топливного насоса. Только на обмотку этого реле ЭБУ подает напряжение +12 В.

Блок управления имеет встроенную систему диагностики. Он может распознавать неполадки в работе системы, предупреждая о них водителя через контрольную лампу «CHECK ENGINE». Кроме того, он хранит диагностические коды, указывающие области неисправности, чтобы помочь специалистам в проведении ремонта.

Память

В электронном блоке управления имеется три вида памяти: оперативное запоминающее устройство (ОЗУ), однократно программируемое постоянное запоминающее устройство (ППЗУ), и электрически программируемое запоминающее устройство (ЭПЗУ).

Оперативное запоминающее устройство это «блокнот» электронного блока управления. Микропроцессор ЭБУ использует его для временного хранения измеряемых параметров для расчетов и для промежуточной информации. Микропроцессор может по мере необходимости вносить в него данные или считывать их.

Микросхема ОЗУ смонтирована на печатной плате ЭБУ. Эта память является энергозависимой и требует бесперебойного питания для сохранения. При прекращении подачи питания содержащиеся в ОЗУ диагностические коды неисправностей и расчетные данные стираются.

Программируемое постоянное запоминающее устройство. В ППЗУ находится общая программа, в которой содержится последовательность рабочих команд (алгоритмы управления) и различная калибровочная информация. Эта информация представляет собой данные управления впрыском, зажиганием, холостым ходом и т. п. которые зависят от массы автомобиля, типа и мощности двигателя, от передаточных отношений трансмиссии и других факторов. ППЗУ называют еще запоминающим устройством калибровок.

Рис. 9-35. Электронный блок управления:

1 - программируемое постоянное запоминающее устройство (ППЗУ)

Содержимое ППЗУ не может быть изменено после программирования. Эта память не нуждается в питании для сохранения записанной в ней информации, которая не стирается при отключении питания, т. е. эта память является энергонезависимой. ППЗУ устанавливается в панельке на плате ЭБУ (рис. 9-35) и может выниматься из ЭБУ и заменяться.

ППЗУ индивидуально для каждой комплектации автомобиля, хотя на разных моделях автомобилей может быть применен один и тот же унифицированный ЭБУ. Поэтому при замене ППЗУ важно установить правильный номер модели и комплектации автомобиля. А при замене дефектного ЭБУ необходимо оставлять прежнее ППЗУ (если оно исправно).

Электрически программируемое запоминающее устройство используется для временного хранения кодов-паролей противоугонной системы автомобиля (иммобилизатора). Коды-пароли, принимаемые ЭБУ от блока управления иммобили-затором (если он имеется на автомобиле), сравниваются с хранимыми в ЭПЗУ и при этом разрешается или запрещается пуск двигателя. Эта память является энергонезависимой и может храниться без подачи питания на ЭБУ.

Датчики инжектора

Датчик температуры охлаждающей жидкости представляет собой термистор, (резистор, сопротивление которого изменяется от температуры). Датчик завернут в выпускной патрубок охлаждающей жидкости на головке цилиндров. При низкой температуре датчик имеет высокое сопротивление (100 кОм при -40 °С), а при высокой температуре - низкое (177 Ом при 100 °С).

Температуру охлаждающей жидкости ЭБУ рассчитывает по падению напряжения на датчике. Падение напряжения высокое на холодном двигателе и низкое на прогретом. Температура охлаждающей жидкости влияет на большинство характеристик, которыми управляет ЭБУ.

Датчик детонации заворачивается в верхнюю часть блока цилиндров (рис. 9-36) и улавливает аномальные вибрации (детонационные удары) в двигателе.

Чувствительным элементом датчика является пьезокристаллическая пластинка. При детонации на выходе датчика генерируются импульсы напряжения, которые увеличива-

ются с возрастанием интенсивности детонационных ударов. Блок управления по сигналу датчика регулирует опережение зажигания, для устранения детонационных вспышек топлива.

Рис. 9-36. Расположение датчика детонации на двигателе:

1 - датчик детонации

Датчик концентрации кислорода применяется в системе впрыска с обратной связью и устанавливается на приемной трубе глушителей. Кислород, содержащийся в отработавших газах, реагирует с датчиком кислорода, создавая разность потенциалов на выходе датчика. Она изменяется приблизительно от 0, 1 В (высокое содержание кислорода - бедная смесь) до 0, 9 В (мало Кислорода - богатая смесь).

Для нормальной работы датчик должен иметь температуру не ниже 360°С. Поэтому для быстрого прогрева после пуска двигателя, в датчик встроен нагревательный элемент. »

Отслеживая выходное напряжение датчика концентрации кислорода, блок управления определяет какую команду по корректировке состава рабочей смеси подавать на форсунки. Если смесь бедная (низкая разность потенциалов на выходе датчика), то дается команда на обогащение смеси. Если смесь богатая (высокая разность потенциалов) - дается команда на обеднение смеси.

Датчик массового расхода воздуха расположен между воздушным фильтром и шлангом впускной трубы. Он термоанемометрического типа. В датчике используются три чувствительных элемента. Один из элементов определяет температуру окружающего воздуха, а два остальные нагреваются до заранее установленной температуры, превышающей температуру окружающего воздуха.

Во время работы двигателя проходящий воздух охлаждает нагреваемые элементы. Массовый расход воздуха определяется путем измерения электрической мощности, необходимой для поддержания заданного превышения температуры нагреваемых элементов над температурой окружающего воздуха. Сигнал датчика - частотный. Большой расход воздуха вызывает сигнал высокой частоты, а малый расход - сигнал низкой частоты.

ЭБУ использует информацию от датчика массового расхода воздуха для определения длительности импульса открытия форсунок.

СО-потенциометр (рис. 9-37) установлен в моторном отсеке на стенке коробки воздухопритока и представляет собой переменный резистор. Он выдает в ЭБУ сигнал, который используется для регулировки состава топливо-воздушной смеси с целью получения нормированного уровня концентрации окиси углерода (СО) в. отработавших газах на холостом ходу. СО-потенциометр подобен винту каче-ства смеси в карбюраторах. Регулировка содержания СО с помощью СО-потенциометра выполняется только на станции технического обслуживания с применением газоанализатора.

Рис. 9-37. СО-потенциометр

Датчик скорости автомобиля устанавливается на коробке передач между приводом спидометра и наконечником гибкого вала привода спидометра. Принцип действия датчика основан на эффекте Холла. Датчик выдает на ЭБУ прямоугольные импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колес.

Датчик положения дроссельной заслонки установлен сбоку на дроссельном патрубке и связан с осью дроссельной заслонки.

Датчик представляет собой потенциометр, на один конец которого подается плюс напряжения питания (5 В), а другой конец соединен с массой. С третьего вывода потенциометра (от ползунка) идет выходной сигнал с электронному блоку управления.

Когда дроссельная заслонка поворачивается, (от воздействия на педаль управления), изменяется напряжение на выходе датчика. При закрытой дроссельной заслонке оно ниже 0, 7 В. Когда заслонка открывается, напряжение на выходе датчика растет и при полностью открытой заслонке должно быть более 4 В.

Отслеживая выходное напряжение датчика блок управления корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т. е. по желанию водителя).

Датчик положения дроссельной заслонки не требует никакой регулировки, т. к. блок управления воспринимает холостой ход (т. е, полное закрытие дроссельной заслонки) как нулевую отметку.

Датчик положения коленчатого вала - индуктивного типа, предназначен для синхронизации работы блока управления с верхней мертвой точкой поршней 1-го и 4-го цилиндров и угловыми положениями коленчатого вала..

Датчик установлен на крышке масляного насоса напротив задающего диска на шкиве привода генератора. Задающий диск представляет собой зубчатое колесо с 58 равноудаленными (6°) впадинами. При таком шаге на диске помещается 60 зубьев, но два зуба срезаны для создания импульса «в» (рис. 9-38) синхронизации («Опорного» импульса), который необходим для согласования работы блока управления с ВМТ поршней в 1-ом и 4-ом цилиндрах. ЭБУ по сигналам датчика определяет частоту вращения коленчатого вала и выдает импульсы на форсунки.

Рис. 9-38. Осциллограмма импульсов напряжения датчика положения коленчатого вала:

а - угловые импульсы; б - опорный импульс

При вращения коленчатого вала зубья изменяют магнитное поле датчика, наводя импульсы напряжения переменного тока. Установочный зазор между сердечником датчика и зубом диска должен находиться в пределах (1+0,2) мм.

Сигнал запроса на включение кондиционера. Если на автомобиле установлен кондиционер, то сигнал поступает от выключателя кондиционера на панели приборов. В данном случае ЭБУ получает информацию о том, что водитель желает включить кондиционер.

Получив такой сигнал ЭБУ сначала подстраивает регулятор холостого хода, чтобы компенсировать дополнительную нагрузку на двигатель от компрессора кондиционера, а затем включает реле, управляющее работой компрессора кондиционера.

Система питания

Воздушный фильтр установлен в передней части моторного отсека на резиновых фиксаторах. Фильтрующий элемент - бумажный, с большой площадью фильтрующей поверхности. При замене фильтрующего элемента его необходимо устанавливать так, чтобы гофры были расположены параллельно осевой линии автомобиля.

Рис. 9-39. Дроссельный патрубок:

1 - патрубок подвода охлаждающей жидкости; 2 - патрубок системы вентиляции картера на холостом ходу; 3 - патрубок для отвода охлаждающей жидкости; 4 - датчик положения дроссельной заслонки; 5 - регулятор холостого хода; 6 - штуцер для продувки адсорбера; 7 – заглушка

Дроссельный патрубок (рис. 9-39) закреплен на ресивере. Он дозирует количество воздуха, поступающего во впускную трубу. Поступлением воздуха в двигатель управляет дроссельная заслонка, соединенная с приводом педали акселератора.

В состав дроссельного патрубка входят датчик 4 положения дроссельной заслонки и регулятор 5 холостого хода. В проточной части дроссельного патрубка (перед дроссельной заслонкой и за ней) находятся отверстия отбора разрежения, необходимые для работы системы вентиляции картера и адсорбера системы улавливания паров бензина. Если последняя система не применяется, то штуцер для продувки адсорбера глушится резиновой заглушкой 7.

Рис. 9-40. Система подачи топлива:

1 - пробка штуцера для контроля давления топлива; 2 - рампа форсунок; 3 - скоба крепления топливных трубок- 4 - регулятор давления топлива; 5 - электробензонасос; 6 - топливный фильтр; 7 - сливной топливопровод; 8 - подающий топливопрорвод; 9 – форсунки

Регулятор 5 холостого хода регулирует частоту вращения коленчатого вала на режиме холостого хода, управляя количеством подаваемого воздуха в обход закрытой дроссельной заслонки. Он состоит из двухполюсного шагового электродвигателя и соединенного с ним конусного клапана. Клапан выдвигается или убирается, по сигналам ЭБУ. Когда игла регулятора полностью выдвинута (что соответствует 0 шагов), клапан полностью перекрывает проход воздуха. Когда игла вдвигается, то обеспечивается расход воздуха, пропорциональный количеству шагов отхода иглы от седла.

Система подачи топлива

Система подачи топлива включает в себя электробензонасос 5 (рис. 9-40), топливный фильтр 6, топливопроводы и рампу 2 форсунок в сборе с форсунками 9 и регулятором 4 давления топлива.

Электробензонасос -двухступенчатый, роторного типа, неразборный установлен в топливном баке. Он обеспечивает подачу топлива под давлением более 284 кПа.

Электробензонасос расположен непосредственно в топливном баке, что снижает возможность образования паровых пробок, т. к. топливо подается под давлением, а не под действием разрежения.

Топливный фильтр встроен в подающую магистраль между электробензонасосом и топливной рампой, и установлен под полом кузова за топливным баком. Фильтр - неразборный, имеет стальной корпус с бумажным фильтрующим элементом.

Рампа 2 форсунок представляет собой полую планку с установленными на ней форсунками и регулятором давления топлива. Рампа форсунок закреплена двумя болтами на впускной трубе. С левой стороны (на рисунке) на рампе форсунок находится штуцер для контроля давления топлива, закрытый резьбовой пробкой 1.

Форсунки 9 крепятся к топливной рампе, от которой к ним подается топливо, а своими распылителями входят в отверстия впускной трубы. В отверстиях топливной рампы и впускной трубы форсунки уплотняются резиновыми уплотнительными кольцами.

Форсунка представляет собой электромагнитный клапан. Когда на нее от ЭБУ поступает импульс напряжения, то клапан открывается и топливо через распылитель тонко распыленной струёй под давлением впрыскивается во впускную трубу на впускной клапан. Здесь топливо испаряется, соприкасаясь с нагретыми деталями, и в парообразном состоянии попадает в камеру сгорания. После прекращения подачи электрического им-

пульса подпружиненный клапан форсунки перекрывает подачу топлива.

Рис. 9-41. Регулятор давления топлива:

1 - корпус; 2 - крышка; 3 - патрубок для вакуумного шланга; 4 - диафрагма; 5 - клапан; А - топливная полость; Б - вакуумная полость

Регулятор 4 давления топлива установлен на топливной рампе и предназначен для поддержания постоянного перепада давления между давлением воздуха во впускной трубе и давлением топлива в рампе.

Регулятор состоит из клапана 5 (рис. 9-41) с диафрагмой 4, поджатого пружиной к седлу в корпусе регулятора. На работающем двигателе регулятор поддерживает давление в рампе форсунок в пределах 284-325 кПа.

На диафрагму регулятора с одной стороны действует давление топлива, а с другой - давление (разрежение) во впускной трубе. При уменьшении давления во впускной трубе (дроссельная заслонка закрывается) клапан регулятора открывается при меньшем давлении топлива, перепуская избыточное топливо по сливной магистрали обратно в бак. Давление топлива в рампе понижается. При увеличении давления во впускной трубе (при открывании дроссельной заслонки) клапан регулятора открывается уже при большем давлении топлива и давление топлива в рампе повышается.

Система зажигания

В системе зажигания не используются традиционные распределитель и катушка зажигания. Здесь применяется модуль 5 (рис. 9-42) зажигания, состоящий из двух катушек зажигания и управляющей электроники высокой энергии. Система зажигания не имеет подвижных деталей и поэто-му не требует обслуживания. Она также не имеет регулировок (в том числе и угла опережения зажигания), т. к. управление зажиганием осуществляет ЭБУ.

Рис. 9-42. Схема системы зажигания:

1 - аккумуляторная батарея; 2 - выключатель зажигания; 3 - реле зажигания; 4 - свечи зажигания; 5 - модуль зажигания; 6 электронный блок управления; 7 - датчик положения коленчатого вала; 8 - задающий диск; А - устройства согласования

В системе зажигания применяется метод распределения искры, называемый методом «холостой искры». Цилиндры двигателя объединены в пары 1-4 и 2-3 и искрообразование происходит одновременно в двух цилиндрах: в цилиндре, в котором заканчивается такт сжатия (рабочая искра) и в цилиндре, в котором происходит такт выпуска (холостая искра). В связи с постоянным направлением тока в обмотках катушек зажигания, ток искрообразования у одной свечи всегда протекает с центрального электрода на боковой, а у второй - с бокового на центральный. Свечи применяются типа А17ДВРМ или AC. P43XLS с зазором между электродами 1, 0-1, 13мм.

Управление зажиганием в системе, осуществляется с помощью ЭБУ. Датчик положения коленчатого вала подает в ЭБУ опорный сигнал, на основе которого ЭБУ делает расчет последовательности срабатывания катушек в модуле зажигания. Для точного управления зажиганием ЭБУ использует следующую информацию:

Частота вращения коленчатого вала;

Нагрузка двигателя (массовый расход воздуха);

Температура охлаждающей жидкости;

Положение коленчатого вала;

Наличие детонации.

Система улавливания паров бензина

Эта система применяется в системе впрыска с обратной связью. В системе применен метод улавливания паров угольным адсорбером. Он установлен в моторном отсеке и соединен трубопроводами с топливным баком и дроссельным патрубком. На крышке адсорбера расположен электромагнитный клапан, которым по сигналам блока управления переключаются режимы работы системы.

Когда двигатель не работает, электромагнитный клапан закрыт и пары бензина из топливного бака по трубопроводу идут к адсорберу, где они поглощаются гранулированным активированным углем. При работающем двигателе адсорбер продувается воздухом и пары отсасываются к дроссельному патрубку, а затем во впускную трубу для сжигания в ходе рабочего процесса.

ЭБУ управляет продувкой адсорбера включая электромагнитный клапан, расположенный на крышке адсорбера. При подаче на клапан напряжения, он открывается, выпуская пары во впускную трубу. Управление клапаном осуществляется методом широтно-импульсной модуляции. Клапан включается и выключается с частотой 16 раз в секунду (16 Гц). Чем выше расход воздуха, тем больше длительность импульсов включения клапана.

ЭБУ включает клапан продувки адсорбера при выполнении всех следующих условий:

Температура охлаждающей жидкости выше 75°С;

Система управления топливоподачей работает в. режиме замкнутого цикла (с обратной связью);

Скорость автомобиля превышает 10 км/ч. После включения клапана критерий скорости меняется. Клапан отключится только при снижении скорости до 7 км/ч;

Открытие дроссельной заслонки превышает 4%. Этот фактор в дальнейшем не играет значения если он не превышает 99%. При полном открытии дроссельной заслонки ЭБУ отключает клапан продувки адсорбера.

Работа системы впрыска

Количество топлива, подаваемого форсунками, регулируется электрическим импульсным сигналом от электронного блока управления (ЭБУ). ЭБУ отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсунками (длительность импульса). Для увеличения количества подаваемого топлива длительность импульса увеличивается, а для уменьшения подачи топлива - сокращается.

ЭБУ обладает способностью оценивать результаты своих расчетов и команд, а также запоминать опыт недавней работы и действовать в соответствии с ним. «Самообучение» ЭБУ является непрерывным процессом, продолжающимся в течение всего срока эксплуатации автомобиля.

Топливо подается по одному из двух разных методов: синхронному, т. е. при определенном положении коленчатого вала, или асинхронному, т. е. независимо или без синхронизации с вращением коленчатого вала. Синхронный впрыск топлива - преимущественно применяемый метод. Асинхронный впрыск топлива применяется, в основном, на режиме пуска двигателя.Форсунки включаются попарно и поочередно: сначала форсунки 1 и 4 цилиндров, а через 180° поворота коленчатого вала - форсунки 2 и 3 цилиндров и т. д. Таким образом, каждая форсунка включается один раз за оборот коленчатого вала, т. е. два раза за полный рабочий цикл двигателя.

Независимо от метода впрыска подача топлива определяется состоянием двигателя, т. е. режимом его работы. Эти режимы обеспечиваются ЭБУ и описаны ниже.

Первоначальный впрыск топлива

Когда коленчатый вал двигателя начинает прокручиваться стартером, первый импульс от датчика положения коленчатого вала вызывает импульс от ЭБУ на включение сразу всех форсунок. Это служит для ускорения пуска двигателя.

Первоначальный впрыск топлива происходит каждый раз при пуске. Длительность импульса впрыска зависит от температуры. На холодном двигателе импульс впрыска увеличивается, для увеличения количества топлива, а на прогретом - длительность импульса уменьшается. После первоначального впрыска ЭБУ переключается на соответствующий режим управления форсунками.

Режим пуска двигателя

При включении зажигания ЭБУ включает реле электробензонасоса, и он создает давление в магистрали подачи топлива к топливной рампе. ЭБУ проверяет сигнал от датчика температуры охлаждающей жидкости и определяет правильное соотношение воздух/топливо для пуска.

После начала вращения коленчатого вала ЭБУ работает в пусковом режиме пока обороты не превысят 400 об/мин или не наступит режим продувки «залитого» двигателя.

Режим продувки двигателя

Если двигатель «залит топливом» (т. е. топливо намочило свечи зажигания)", он может быть очищен путем полного открытия дроссельной заслонки при одновременном проворачивании коленчатого вала. При этом ЭБУ не подает импульсы впрыска на форсунки и двигатель должен «очиститься». ЭБУ поддерживает этот режим до тех пор, пока обороты двигателя ниже 400 об/мин, и датчик положения дроссельной заслонки показывает, что она почти полностью открыта (более 75%).

Если дроссельная заслонка удерживается почти полностью открытой при пуске двигателя, то он не запустится, т. к. при полностью открытой дроссельной заслонке импульсы впрыска на форсунку не подаются.

Рабочий режим управления топливоподачей

После пуска двигателя (когда обороты более 400 об/мин) ЭБУ управляет системой подачи топлива в рабочем режиме. На этом режиме ЭБУ рассчитывает длительность импульса на форсунки по сигналам от датчика положения коленчатого вала (информация о частоте вращения), датчика массового расхода воздуха, датчика температуры охлаждающей жидкости и датчика положения дроссельной заслонки.

Рассчитанная длительность импульса впрыска может давать соотношение воздух/топливо, отличающееся от 14, 7: 1. Примером может служить непрогретое состояние двигателя, т. к. при этом для обеспечения хороших ездовых качеств требуется обогащенная смесь.

Рабочий режим для системы впрыска с обратной связью

В этой системе ЭБУ сначала рассчитывает длительность импульса на форсунки на основе сигналов от тех же датчиков, что и в системе впрыска без обратной связи. Отличие состоит в том, что в системе с обратной связью ЭБУ еще использует сигнал от датчика кислорода для корректировки и тонкой регулировки расчетного импульса, чтобы точно поддерживать соотношение воздух/топливо на уровне 14, 6-14, 7: 1. Это позволяет каталитическому нейтрализатору работать с максимальной эффективностью.

Режим обогащения при ускорении

ЭБУ следит за резкими изменениями положения дроссельной заслонки (по датчику положения дроссельной заслонки) и за сигналом датчика массового расхода воздуха и обеспечивает подачу добавочного количества топлива за счет увеличения длительности импульса впрыска. Режим обогащения при ускорении применяется только для управления топливоподачей в переходных условиях (при перемещении дроссельной заслонки).

Режим мощностного обогащения

ЭБУ следит за сигналом датчика положения дроссельной заслонки и частотой вращения коленчатого вала для определения моментов, в которые водителю необходима максимальная мощность двигателя. Для достижения максимальной мощности требуется обогащенная горючая смесь, и ЭБУ изменяет соотношение воздух/топливо приблизительно до 12: 1. В системе впрыска с обратной связью на этом режиме сигнал датчика концентрации кислорода игнорируется, т. к. он. будет указывать на обогащенность смеси.

Режим обеднения при торможении

При торможении автомобиля с закрытой дроссельной заслонкой могут увеличиться выбросы в атмосферу

токсичных компонентов. Чтобы не допустить этого, электронный блок управления следит за уменьшением угла открытия дроссельной заслонки и за сигналом датчика массового расхода воздуха и своевременно уменьшает количество подаваемого топлива путем сокращения импульса впрыска.

Режим отключения подачи топлива при торможении двигателем

При торможении двигателем с включенной передачей и сцеплением ЭБУ может на короткие периоды времени полностью отключить импульсы впрыска топлива. Отключение и включение подачи топлива на этом режиме происходит при выполнении определенных условий по температуре охлаждающей жидкости, частоте вращения коленчатого вала, скорости автомобиля и углу открытия дроссельной заслонки.

Компенсация напряжения питания

При падении напряжения питания система зажигания может давать слабую искру, а механическое движение «открытия» форсунки может занимать больше времени. ЭБУ компенсирует это путем увеличения времени накопления энергии в катушках зажигания и длительности импульса впрыска.

Соответственно при возрастании напряжения аккумуляторной батареи (или напряжения в бортовой сети автомобиля) ЭБУ уменьшает время накопления энергии в катушках зажигания и длительность впрыска.

Режим отключения подачи топлива.

При выключенном зажигании топливо форсункой не подается, чем исключается самовоспламенение смеси при перегретом двигателе. Кроме того, импульсы впрыска топлива не подаются, если ЭБУ не получает опорных импульсов от датчика положения коленчатого вала, т. е. это означает, что двигатель не работает.

Отключение подачи топлива также происходит при превышении предельно допустимой частоты вращения коленчатого вала двигателя, равной 6510 об/мин, для зашиты двигателя от перекрутки.

Управление электровентилятором системы охлаждения.

Электровентилятор включается и выключается ЭБУ в зависимости от температуры двигателя, частоты вращения коленчатого вала, работы кондиционера (если он есть на автомобиле) и других факторов. Электровентилятор включается с помощью вспомогательного реле К9, расположенного в монтажном блоке.

При работе двигателя электровентилятор включается если температура охлаждающей жидкости превысит 104 °С или будет дан запрос на включение кондиционера. Электровентилятор выключается после падения температуры охлаждающей жидкости ниже 101°С, после выключения кондиционера или остановки двигателя.

2186 Просмотров

Каждый автолюбитель в курсе, что у машины может быт как инжекторный двигатель, так и карбюраторный. Только не все знают, что каждый из них представляет из себя. Поэтому следует как можно лучше разобраться в этом вопросе. Для начала отметим, что функция выполняется одна и та же. Формируется горючая смесь, которая подается в двигатель. Только между их работой есть большое отличие. Рассмотрим какое.

Принцип работы инжекторного типа двигателя

Если сказать конкретно, то под карбюратором понимается устройство, которое создает смесь из воздуха и топлива, также оно в состоянии регулировать расход полученной смеси. Принцип работы заключается в том, чтобы засасывать ее в мотор. Это возможно благодаря тому, что и атмосфера имеют разное давление.

Инжекторный двигатель подразумевает работу электроники. В этой системе контролируется качество смеси без участия человека. Впрыскивается она с помощью форсунок дозированно. После впрыска смесь отправляется в двигатель для сгорания. В настоящее время машины оснащены именно электронной, а не механической системой. Далее рассмотрим, чем отличается один от другого.

Сравнение инжектора и карбюратора

Рассмотрим в чем принцип работы карбюратора. Это устройство способно сформировать смесь, которая состоит из воздуха и топлива. Смесь богата на горючие, легковоспламеняющиеся вещества. Она нужна, чтобы мотором могла осуществляться требуемая работа. Сколько бы оборотов не совершала двигательная система, он поглощает одно и то же по объему количество смеси.

По расходам карбюратор потребляет очень много топлива. В то же время сильно загрязняется воздух.

Теперь рассмотрим, каков принцип . Все устройство работает так, что в мотор отправляется бедная смесь из воздуха и топлива, которая должна быть точно дозирована. У современных автомобилей это происходит под влиянием блока управления. Так как дозируется топливо по граммам (порциям), то и расход его значительно мал. К тому же, токсичность выхлопных газов практически на нуле при выходе из выхлопной трубы. Получается, что двигатель внутреннего сгорания, практически не загрязняет воздух.

Инжектор может увеличить мощность мотора до десяти процентов, также клапанный блок устроен так, что улучшается. Принцип действия, который допускает устройство внутреннего сгорания, состоит в том, что инжектор образует смесь из воздуха и горючего, причем для него важно такое топливо, которое отличается качеством, иначе автомобилем управлять невозможно.

Также еще хочется отметить, что в отличие от карбюратора, который зимой замерзает, а летом перегревается, на инжектор не влияет температурный режим внешней среды.

Если говорить о том, насколько надежен карбюратор, то его принцип работы очень прост. Устройство так сделано, что после сгорания топлива, через выхлопную трубу выходит воздух, который сильно загрязнен. Но зато его не нужно регулярно обслуживать и производить ремонтные работы при эксплуатации. Только важно, чтобы не испортить устройство, использовать фильтр для топлива и только качественную марку.

Клапанный блок при этом отличается своей надежностью. Если мы говорим о карбюраторе, то на самом деле это устройство ломается очень часто, так как трудно найти качественное топливо. Правда, отремонтировать его очень просто. Любой автолюбитель это сделает своими руками. К тому же несложно найти запасные части, да и стоят они недорого.

Если же говорить об инжекторе, то его клапанный блок более надежен, когда его эксплуатируют. Но если что-то сломается, то починить сложнее, да и диагностировать поломку самостоятельно не удастся. Требуется особое оборудование. К тому же все дополнительные элементы для сгорания топлива, которые обосновывают принцип работы инжектора, стоят дорого.

Отличия между инжектором и карбюратором.

  1. Если мы говорим о карбюраторе, то смесь поступает в мотор сразу, а при работе инжектора в цилиндр отправляется смесь после впрыска из форсунок.
  2. Когда речь идет о карбюраторе, то обычно всегда подразумевается нестабильное его использование, тогда как благодаря электронике обеспечивается надежность.
  3. Карбюратором в холода пользоваться опасно, он замерзает, когда очень холодно, тогда как для инжектора погода не помеха.
  4. Карбюратор обеспечивает выбросы в атмосферу грязные, тогда как электроника более чистые.
  5. Благодаря электронной системе проще набрать обороты, если сравнивать с карбюратором.
  6. Если применяется инжектор, то обычно экономится до сорока процентов горючего.
  7. Хотя карбюратор ломается чаще, чем электроника, но отремонтировать второй очень дорого, по сравнению с первым.
  8. Также можно отметить еще одно отличие, которое состоит в том, что хотя каждый элемент привередлив к тому, каким качеством обладает топливо, электронная система также подвержена поломкам от некачественного горючего.

Оборудование такого рода используется во всех системах впрыска двигателей - и бензиновых, и дизельных. Сегодня на современных двигателях используют форсунки, которые оснащены электронным управлением впрыска.

Зависимо от того или иного способа выполнения впрыска различают такие виды форсунок, как: электромагнитная, пьезоэлектрическая и электрогидравлическая.

  • Читайте также статью:

Конструкция и принцип функционирования электромагнитной форсунки


Фотография устройства электромагнитной форсунки


Электромагнитное устройство такого плана, как правило, используют, на бензиновых двигателях, включая и те, которые имеют систему непосредственного впрыска. Данный вид оборудования характеризуется довольно простой конструкцией, которая состоит из сопла и включающего электромагнитного клапана, оснащенного иглой.

Работа электромагнитной форсунки происходит таким образом. Электронный блок управления, в точном соответствии с заложенным ранее алгоритмом, обеспечивает в необходимый момент на обмотку возбуждения клапана подачу напряжения. В процессе этого создается электромагнитное поле, которое преодолевает усилие пружины, затем втягивает якорь с иглой и, таким образом, освобождает сопло. После этого осуществляется впрыск топлива. Когда же напряжение пропадает, пружина иглу форсунки возвращает на седло.

Конструкция и принцип функционирования электрогидравлической форсунки


Фотография устройства электрогидравлической форсунки


Электрогидравлическое оборудование такого плана применяют на дизельных двигателях, включая и те, которые оборудованы системой впрыска под названием «Common Rail». Конструкция устройства данного типа объединяет в себе электромагнитный клапан, сливную и впускную дроссели, камеру управления.

Принцип работы данного оборудования основан на применении давления топлива, и при впрыске, и после его прекращения. Электромагнитный клапан в исходном положении обесточен и полностью закрыт, игла устройства прижата к седлу с помощью силы давления на поршень топлива в камере управления. В таком положении впрыск топлива не осуществляется. Следует отметить, что в такой ситуации давление топлива на иглу в связи с разностью площадей контакта менее давления, осуществляемого на поршень.

После команды электроблока управления происходит срабатывание электромагнитного клапана и осуществляется открытие сливной дроссели. При этом, топливо, находящееся в камере управления, вытекает в сливную магистраль через дроссель. Впускной дроссель служит препятствием тому, чтобы произошло быстрое выравнивание давлений не только во впускной магистрали, но также и в камере управления. Постепенно давление на поршень уменьшается, но не изменяется давление топлива, осуществляемое на иглу - в результате этого происходит поднятие иглы и, соответственно, впрыск горючего.

Конструкция, преимущества и принцип функционирования пьезоэлектрической форсунки


Схема устройства пьезоэлектрической форсунки


Наиболее совершенным устройством, с помощью которого обеспечивается впрыск топлива, считается пьезоэлектрическое оборудование такого плана - оно называется «пьезофорсунка». Данный вид устройств устанавливают на тех дизельных двигателях, которые оборудованы системой впрыска, носящей название Common Rail - аккумуляторная топливная система.

Преимущество подобных устройств - это быстрота срабатывания (примерно в четыре раза быстрее, чем электромагнитный клапан), что в результате предоставляет возможность многократно впрыскивать топливо на протяжении течение одного цикла. Кроме этого плюсом пьезофорсунок является максимально точная дозировка топлива, которое впрыскивается.

Создание данного вида оборудования стало возможным в связи с использованием в управлении форсункой пьезоэффекта, который основан на смене длины пьезокристалла в результате воздействия напряжения. Конструкция такого устройства включает в себя пьезоэлемент и толкатель, отвечающий за переключение клапана, а также иглу - всё это помещено в корпус устройства.

В работе данного вида оборудования, также как и в работе электрогидравлических устройств такого плана, используют гидравлический принцип. Игла в исходном положении посажена на седло из-за высокого давления топлива. В процессе подачи на пьезоэлемент электрического сигнала, происходит увеличение его длины, что передает на поршень толкателя усилие. В результате этого происходит открытие переключающего клапана и поступление в сливную магистраль топлива. Падает давление выше иглы. В связи с давлением в нижней части происходит поднятие иглы и, соответственно, впрыск топлива.

Количество топлива, которое впрыскивается, определяется такими факторами, как:

  • длительность воздействия на пьезоэлемент;
  • давление топлива в топливной рампе.

Инжекторы быстро пришли на смену карбюраторам. Сейчас уже сложно встретить легковой автомобиль с бензиновым двигателем, который оборудован карбюратором. Принцип работы инжектора позволяет существенно экономить топливо и производить меньшие выбросы в окружающую среду.

Такая система питания имеет ряд преимуществ перед карбюратором и позволяет существенно увеличить срок эксплуатации, но и требует соответственного уровня ухода. Давайте подробнее рассмотрим историю создания инжектора, типы топливных систем под его управлением и разберемся как же это все работает.

История

В 80-х годах начали вводится нормы экологического выброса для автомобилей, именно их ввод можно считать точкой отчета установки инжекторов на автомобили. Но разработка и сам принцип работы инжектора возник намного раньше, примерно на 50 лет, то есть в 30-х годах. Но в то время толчком для разработки было повышение мощности, а не выбросы в окружающую среду.

Первыми моторами, на которые была установлена инжекторная система питания были двигателя военных самолетов. Если судить по изобретениям тех времен, то инжектор полностью выполнял отведенную ему функцию. Но как только появились реактивные двигатели, то такие системы перестали применяться. Для применения в автомобилях инжекторная система механической конструкции практически не подходила. Карбюратор выигрывал, так как инжекторная система не успевала перестраиваться под режимы работы двигателя, которых у машины намного больше, чем у самолета.

Второе дыхание инжекторная система получила, как только начала развиваться электроника. Ну и конечно же, не малую роль в этом деле сыграла экологичность такой системы. Ввиду того, что карбюратор очень сильно загрязняет атмосферу пришлось разрабатывать ему замену и инженеры решили вернутся к старой доброй инжекторной системе, только намного изменили принцип её работы.

Преимущества инжектора

Второе название инжекторной системы — система впрыска. Даже дословный перевод слова инжектор значит ничто иное, как система впрыска. Принцип работы инжектора основывается на принудительной подаче топлива в систему , в отличии от карбюратора, внутрь которого бензин попадает за счет разрежения воздуха в цилиндрах. Именно принудительность подачи топлива существенно отличает инжектор от карбюратора.

Часто водители задаются вопросом о том, чем же инжектор лучше карбюратора? А существенных плюсов у него несколько:

  1. Экономия топлива;
  2. Повышение мощности двигателя;
  3. Меньшее количество выбросов в окружающую среду;
  4. Инжекторный двигатель очень легко заводится при любых условиях.

Все это достигается простым способомподачей топлива порциями , которые зависят от режима работы мотора. Эта особенность дает возможность подавать в цилиндры оптимальную смесь, соотношение воздуха и топлива в которой полностью сбалансированно. Повышенная мощность достигается за счет того, что при каждом такте работы мотора в цилиндр попадает оптимальная смесь.

Видео о принципе работы инжектора

Виды инжекторов

Несмотря на все недостатки механической системы управления инжектором, именно такие устройства были установлены на первых автомобилях. Но они дополнительно оснащались электронной системой управления, что позволяло существенно улучшить работу двигателя.

В современных автомобилях вся система управления построена на электронных датчиках и переключателях. Контроль над всеми элементами осуществляется с помощью электронного блока управления. Именно развитие электроники дало путь к дальнейшему усовершенствованию системы впрыска топлива.

Инжекторы различаются только по типу подачи топлива и таких систем насчитывают всего три:

  1. Центральная;
  2. Непосредственного впрыска.
  3. Распределенная;

Давайте подробнее рассмотрим принцип работы инжектора в каждой из таких систем.

Центральная система подачи топлива

Центральная система подачи топлива не применяется в современных автомобилях и считается устаревшей и малоэффективной. Если кратко говорить о принципе её работы, то он заключается во впрыске топлива в одном месте, в котором оно смешивалось с воздухом и дальнейшим его распределением по цилиндрам.

Тут прослеживается некоторая схожесть с принципом работы карбюраторной системы подачи топлива, есть лишь одно существенное отличие — подача топлива осуществляется под давлением. Благодаря подаче под давлением можно добиться смешивания топлива с воздухом и его распыления. Но существенным недостатком такой системы является невозможность контролировать равномерную подачу во все цилиндры.

Но были у такой системы и существенные преимущества, прежде всего это простота устройства и мгновенная реакция на изменения в работе мотора. Но равномерного наполнения цилиндров достичь не удалось, соответственно и топливо в них сгорало по разному. Это и не дало такой системе широкого распространения.

Непосредственного впрыска

Самой совершенной на данный момент считается система непосредственного впрыска топлива. Её отличие от описанной выше заключается в непосредственном принудительном впрыске топлива в цилиндры и смешивании его с воздухом внутри него.Тут наблюдается схожесть принципа работы с дизельными двигателями. Среди плюсов такой системы является уменьшение расхода и увеличение мощности. А минусами является привередливость к качеству топлива и сложность конструкции.

Распределенная

Принцип работы инжектора по распределенной системе впрыска топлива считается оптимальной на сегодняшний день и применяется чаще всего. Несмотря на впрыск топлива непосредственно во впускной коллектор, бензин все равно подается отдельно в каждый цилиндр. Для достижения раздельной подачи топлива, элементы конструкции установлены возле головки двигателя и бензин попадает в зону работы клапанов.

Такая конструкция позволяет получить идеальную смесь воздуха и топлива, которая обеспечивает максимальное горение и мощность. Экологичность, экономичность и повышение мощность — все это можно получить благодаря распределенной системе впрыска топлива.

Но несмотря на целый ряд плюсов, у такой системы есть и свои минусы — она очень привередлива к качеству топлива, а её конструкция довольно сложная для ремонта и эксплуатации. Но несмотря на это, она стремительно набирает обороты в использовании и постоянно улучшается.

Принцип работы инжектора и его конструкция

Думаю что будет лучше всего, если мы рассмотрим принцип работы инжектора на распределенной системе впрыска, так как именно она установлена на большинстве автомобилей и считается одной из самых удачных и распространенных.

Для удобства предлагаю разделить систему подачи топлива на две основные составляющие — электронную и механическую. Роль механической системы достаточно простая — обеспечение непрерывной и дозированной подачи топлива в цилиндры. А вот управление и контроль системы производится электроникой.

Механическая часть

Механическая составляющая инжекторной системы включает в себя следующие компоненты:

  • бензонасос (электрический);
  • топливный бак;
  • фильтр очистки бензина;
  • топливную рампу;
  • топливопроводы высокого давления;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Этот список составляющих не исчерпывающий. В зависимости от конструктивных особенностей двигателя и системы управления в механическую часть могут включатся и другие элементы. Приведенный выше список является списком обязательных элементов для любого двигателя.

Принцип работы

Теперь давайте рассмотрим зачем все эти составляющие нужны и какую работу выполняет каждая из них. Думаю все и так знают, что топливный бак это емкость для бензина. Электрический бензонасос, который расположен в баке, обеспечивает непрерывную подачу топлива под давлением.

После чего топливо попадает в фильтр, где очищается от примесей и прочего мусора. Топлипроводы высокого давления позволяют бензину беспрепятственно двигаться по системе подачи топлива.

Регулятор давления не позволяет достигать критической отметки давления во всей системе. Через регулятор топливо попадает в топливную рамку, которая подводит его к форсункам. Форсунки расположены во впускном коллекторе.

Несколько лет назад форсунки срабатывали под давлением топлива и их конструкция была полностью механической. Тут принцип работы достаточно прост — бензин оказывает давление на пружину форсунки и открывает её, а уже через неё и впрыскивается в цилиндры.

Сейчас на большинстве автомобилей устанавливают электромагнитные форсунки. Основной составляющей, которой являются обычный якорь и обмотка. Канал подачи топлива открывается благодаря получению сигнала от электронной системы управления.

С обратной стороны в систему принудительно подается воздух, через воздушный фильтр. Дроссельный узел с заслонкой располагается в патрубке по которому идет воздух. Когда водитель нажимает на педаль газа, он воздействует на заслонку. Но водитель осуществляет контроль только над воздухом, который подается в цилиндр, топливо регулирует электронная система управления.

Электронная часть

Блок памяти и контролер являются основными составляющими в электронной системе управления, которая в свою очередь выполняет роль основы электронной части инжекторной системы. Блок управления осуществляет контроль над системой подачи топлива благодаря целому ряду датчиков, которые входят в конструкцию инжектора.

Последние материалы раздела:

Смотреть что такое
Смотреть что такое "душевный мир" в других словарях

Энциклопедический словарь 1. МИР, а; мн. миры, ов; м. 1. Совокупность всех форм материи в земном и космическом пространстве; Вселенная....

Наталья СтепановаМолитвенный щит
Наталья СтепановаМолитвенный щит

Все дело в том, дорогие мои, что Господь Бог наделил меня искренней любовью к людям. Этому меня учила и моя бабушка. Если говорить совсем кратко,...

Сонник: к чему снится Лошадь
Сонник: к чему снится Лошадь

Во сне дано не каждому, ведь это сильное, свободолюбивое животное может запросто скинуть своего наездника. Сон, в котором сновидец скачет на...