Роторно-поршневой двигатель. Роторный двигатель: орел и решка

Роторно-поршневой двигатель(РПД), или двигатель Ванкеля. Двигатель внутреннего сгорания, разработанный Феликсом Ванкелем в 1957 году в соавторстве с Вальтером Фройде. В РПД функцию поршня выполняет трехвершинный (трехгранный) ротор, совершающий вращательные движения внутри полости сложной формы. После волны экспериментальных моделей автомобилей и мотоциклов, пришедшейся на 60-е и 70-е годы ХХ века, интерес к РПД снизился, хотя ряд компаний по-прежнему работает над совершенствованием конструкции двигателя Ванкеля. В настоящее время РПД оснащаются легковые автомобили компании Mazda. Роторно-поршневой двигатель находит применение в моделизме.

Принцип работы

Сила давления газов от сгоревшей топливо-воздушной смеси приводит в движение ротор, насаженный через подшипники на эксцентриковый вал. Движение ротора относительно корпуса двигателя (статора) производится через пару шестерен, одна из которых, большего размера, закреплена на внутренней поверхности ротора, вторая, опорная, меньшего размера, жестко прикреплена к внутренней поверхности боковой крышки двигателя. Взаимодействие шестерен приводит к тому, что ротор совершает круговые эксцентричные движения, соприкасаясь гранями с внутренней поверхностью камеры сгорания. В результате между ротором и корпусом двигателя образуются три изолированные камеры переменного объема, в которых происходят процессы сжатия топливо-воздушной смеси, ее сгорания, расширения газов, оказывающих давление на рабочую поверхность ротора и очищения камеры сгорания от отработанных газов. Вращательное движение ротора передается на эксцентриковый вал, установленный на подшипниках и передающий вращающий момент на механизмы трансмиссии. Таким образом в РПД одновременно работают две механические пары: первая - регулирующая движение ротора и состоящая из пары шестерен; и вторая - преобразующая круговое движение ротора во вращение эксцентрикового вала. Передаточное соотношение шестерен ротора и статора 2:3, поэтому за один полный оборот эксцентрикового вала ротор успевает провернуться на 120 градусов. В свою очередь за один полный оборот ротора в каждой из трех образуемых его гранями камер производится полный четырехтактный цикл двигателя внутреннего сгорания.
схема РПД
1 - впускное окно; 2 выпускное окно; 3 - корпус; 4 - камера сгорания; 5 – неподвижная шестерня; 6 - ротор; 7 – зубчатое колесо; 8 - вал; 9 – свеча зажигания

Достоинства РПД

Главным достоинством роторно-поршневого двигателя является простота конструкции. В РПД на 35-40 процентов меньше деталей, чем в поршневом четырехтактном двигателе. В РПД отсутствуют поршни, шатуны, коленчатый вал. В «классическом» варианте РПД нет и газораспределительного механизма. Топливо-воздушная смесь поступает в рабочую полость двигателя через впускное окно, которое открывает грань ротора. Отработанные газы выбрасываются через выпускное окно, которое пересекает, опять же, грань ротора (это напоминает устройство газораспределения двухтактного поршневого двигателя).
Отдельного упоминания заслуживает система смазки, которая в простейшем варианте РПД практически отсутствует. Масло добавляется в топливо - как при эксплуатации двухтактных мотоциклетных моторов. Смазка пар трения (прежде всего ротора и рабочей поверхности камеры сгорания) производится самой топливо-воздушной смесью.
Поскольку масса ротора невелика и легко уравновешивается массой противовесов эксцентрикового вала, РПД отличается небольшим уровнем вибраций и хорошей равномерностью работы. В автомобилях с РПД легче уравновесить двигатель, добившись минимального уровня вибраций, что хорошо сказывается на комфортабельности машины в целом. Особой плавностью хода отличаются двухроторные двигатели, в которых роторы сами являются снижающими уровень вибраций балансирами.
Еще одно привлекательное качество РПД - высокая удельная мощность при высоких оборотах эксцентрикового вала. Это позволяет добиться от автомобиля с РПД отличных скоростных характеристик при относительно небольшом расходе топлива. Малая инерционность ротора и повышенная по сравнению с поршневыми двигателями внутреннего сгорания удельная мощность позволяют улучшить динамику автомобиля.
Наконец, немаловажным достоинством РПД являются небольшие размеры. Роторный двигатель меньше поршневого четырехтактного мотора той же мощности примерно вдвое. И это позволяет рациональней использовать пространство моторного отсека, более точно рассчитывать расположение узлов трансмиссии и нагрузку на переднюю и заднюю ось.

Недостатки РПД

Главный недостаток роторно-поршневого двигателя - невысокая эффективность уплотнений зазора между ротором и камерой сгорания. Имеющий сложную форму ротор РПД требует надежных уплотнений не только по граням (а их четыре у каждой поверхности - две по вершинным, две по боковым граням), но и по боковой поверхности, соприкасающейся с крышками двигателя. При этом уплотнения выполнены в виде подпружиненных полосок из высоколегированной стали с особо точной обработкой как рабочих поверхностей, так и торцов. Заложенные в конструкцию уплотнений допуски на расширение металла от нагрева ухудшают их характеристики - избежать прорыва газов у торцевых участков уплотнительных пластин практически невозможно (в поршневых двигателях используют лабиринтовый эффект, устанавливая уплотнительные кольца зазорами в разные стороны).
В последние годы надежность уплотнений резко возросла. Конструкторы нашли новые материалы для уплотнений. Однако, говорить о каком-то прорыве пока не приходится. Уплотнения до сих пор остаются самым узким местом РПД.
Сложная система уплотнений ротора требует эффективной смазки трущихся поверхностей. РПД потребляет больше масла, чем четырехтактный поршневой двигатель (от 400 граммов до 1 килограмма на 1000 километров). При этом масло сгорает вместе с топливом, что плохо сказывается на экологичности моторов. В выхлопных газах РПД опасных для здоровья людей веществ больше, чем в выхлопных газах поршневых двигателей.
Особые требования предъявляются и к качеству масел, используемых в РПД. Это связано, во-первых, со склонностью к повышенному износу (из-за большой площади соприкасающихся деталей - ротора и внутренней камеры двигателя), во-вторых, к перегреву (опять же из-за повышенного трения и из-за небольших размеров самого двигателя). Для РПД смертельно опасны нерегулярная смена масла - поскольку абразивные частицы в старом масле резко увеличивают износ двигателя, и переохлаждение мотора. Запуск холодного двигателя и недостаточный его прогрев приводят к тому, что в зоне контакта уплотнений ротора с поверхностью камеры сгорания и боковыми крышками оказывается мало смазки. Если поршневой двигатель заклинивает при перегреве, то РПД чаще всего - во время запуска холодного двигателя (или при движении в холодную погоду, когда охлаждение оказывается избыточным).
В целом рабочая температура РПД выше, чем у поршневых двигателей. Самая термонапряженная область - камера сгорания, которая имеет небольшой объем и, соответственно, повышенную температуру, что затрудняет процесс поджига топливо-воздушной смеси (РПД из-за протяженной формы камеры сгорания склонны к детонации, что тоже можно отнести к недостаткам этого типа двигателей). Отсюда требовательность РПД к качеству свечей. Обычно их устанавливают в эти двигатели попарно.
Роторно-поршневые двигатели при великолепных мощностных и скоростных характеристиках оказываются менее гибкими (или менее эластичными), чем поршневые. Они выдают оптимальную мощность только на достаточно высоких оборотах, что вынуждает конструкторов использовать РПД в паре с многоступенчатыми КП и усложняет конструкцию автоматических коробок передач. В конечном итоге РПД оказываются не такими экономичными, какими должны быть в теории.

Практическое применение в автопромышленности

Наибольшее распространение РПД получили в конце 60-х и начале 70-х годов прошлого столетия, когда патент на двигатель Ванкеля был куплен 11 ведущими автопроизводителями мира.
В 1967 году немецкая компания NSU выпустила серийный легковой автомобиль бизнес-класса NSU Ro 80 . Эта модель выпускалась в течение 10 лет и разошлась по миру в количестве 37204 экземпляров. Автомобиль пользовался популярностью, но недостатки установленного в нем РПД, в конце концов, испортили репутацию этой замечательной машины. На фоне долговечных конкурентов модель NSU Ro 80 выглядела «бледно» - пробег до капитального ремонта двигателя при заявленных 100 тысячах километров не превышал 50 тысяч.
С РПД экспериментировали концерн Citroen , Mazda , ВАЗ . Наибольших успехов добилась Mazda, которая выпустила свой легковой автомобиль с РПД еще в 1963 году, на четыре года раньше появления NSU Ro 80. Сегодня концерн Mazda оснащает РПД спорткары серии RX. Современные автомобили Mazda RX-8 избавлены от многих недостатков РПД Феликса Ванкеля. Они вполне экологичны и надежны, хотя среди автовладельцев и специалистов по ремонту считаются «капризными».

Практическое применение в мотопромышленности

В 70-е и 80-е годы с РПД экспериментировали некоторые производители мотоциклов - Hercules, Suzuki и другие. В настоящее время мелкосерийное производство «роторных» мотоциклов налажено только в компании Norton, выпускающей модель NRV588 и готовящей к серийному выпуску мотоцикл NRV700.
Norton NRV588 - спортбайк, оснащенный двухроторным двигателем общим объемом в 588 кубических сантиметров и развивающим мощность в 170 лошадиных сил. При сухом весе мотоцикла в 130 кг энерговооруженность спортбайка выглядит в буквальном смысле запредельной. Двигатель этой машины оснащен системами впускного тракта переменной величины и электронного впрыска топлива. О модели NRV700 известно лишь то, что мощность РПД у этого спортбайка будет достигать 210 л.с.

Паровые машины, как и традиционные ДВС отличаются общим недостатком - возвратно-поступательные движения поршня должны преобразовываться во вращательные движения колес. Это и является причиной низкого КПД, высокого износа основных элементов.

Многие инженеры пытались решить эту проблему, придумав двигатель внутреннего сгорания, все детали которого бы только вращались. Однако изобрести такой агрегат смог механик-самоучка, не окончивший ни высшего, ни даже средне-специального учебного заведения.

Немного истории

В 1957 году малоизвестный механик-изобретатель Феликс Ванкель и ведущий инженер NSU Вальтер Фреде стали первыми, кто решил установить роторно-поршневой мотор на автомобиль. «Подопытным» стал на NSU Prinz. Первоначальная конструкция была далекой от совершенства. К примеру, свечи приходилось менять практически после полной разборки агрегата. К тому же, надежность мотора оставалась под сомнением, а про экономичность можно было не упоминать.

После множества испытаний концерн занялся выпуском машин с традиционным ДВС. Однако первый роторно-поршневой DKM-54 мог продемонстрировать великий потенциал.

Именно так оригинальная разновидность ДВС получил свой шанс на внедрение в производство авто. В дальнейшем он постоянно дорабатывался, однако перспективы роторно-поршневого мотора уже тогда были очевидны. РПД входит в классификацию роторных моторов как один из 5 представителей линейки.

К 80-м годам 20 века роторные исследовались лишь японской компанией Mazda. Еще к этому мотору проявлял внимание ВАЗ. В СССР бензин стоил достаточно дешево, а такой агрегат имел достаточно большую мощность. Однако к 2004 году производство машин с таким двигателем прекратилось. Япония стала единственной страной, в которой продолжается разработка роторного двигателя.

Есть множество разновидностей роторных агрегатов. Единственное их отличие - поверхность корпуса и число выполненных на роторе граней. Различные компоновки таких моторов применяются в авто- и судостроении.


Достоинства

Двигатель Ванкеля с момента создания имел множество выгодных преимуществ перед поршневыми моторами. Агрегат постоянно дорабатывался,что позволило повысить его экономичность и производительность.

Среди преимуществ»Ванкеля» выступают:

  1. Небольшие габариты и вес. «Ванкель» практически в 2 раза меньшепоршневого ДВС, что положительно сказывается на управляемости машины, способствует оптимальному монтажукоробки передач, позволяет сделать салон намного просторнее.
  2. В сравнении с двухтактным мотором, двигатель Ванкеля имеет гораздо меньше деталей. Это более выгодно с точки зрения ремонта.
  3. Вдвое большая мощность, чем у стандартных ДВС.
  4. Большая плавность работы - отсутствие поступательно-возвратных движений благоприятно сказывается на комфорте езды.
  5. Возможность заправки низкооктановым бензином.

Все элементы мотора вращаются в одну сторону. Это улучшает внутренний баланс агрегата и снижает вибрации. «Ванкель» выдает мощность равномерно и плавно. За время пока ротор оборачивается 1 раз, выходной вал совершает 3 оборота. Каждое сгорание осуществляется за 90 фазу вращение ротора.

Это говорит о том, что с 1 ротором способен выдавать мощностьза ¾ каждого поворота выходного вала. Двигатель с 1 цилиндром может выдавать мощность лишь за ¼ каждого витка выходного вала.

Недостатки

К недостаткам двигателя относятся непривычность для владельцев и механиков. Такой агрегат требует изменить многие привычки. К примеру, тормозить РПД не получится, а штурм подъемов «внатяг» обречен на неудачу. Компактный мотор обладает малой инерцией, чего не скажешь о массивных поршневых ДВС. При частыхзапусках-выключениях «забрасываются» свечи.Звук мотора некоторые автолюбители также относят к недостаткам.

Более серьезными являются органические изъяны роторно-поршневого агрегата. Во-первых, он обладает увеличенным расходом горючего. Это легко объяснить неоптимальной формой камеры, теряющей тепло через стенки. К тому же, мотор «съедает» достаточно много масла. Срок эксплуатации Ванкеля ниже, чем у стандартного ДВС -роторные уплотнениярегулярно изнашиваются.

Значительная роль отведена жесткости внешней характеристики роторно-поршневого мотора. Для управления машиной с таким двигателем требуется достаточно часто манипулировать рычагом коробки передач. Это объясняется тем, что необходим короткий передаточный ряд и увеличенное количество передач.

Идеальным вариантом является монтаж вариатора. Однако на спорткарах автоматы не приживаются, а для авто семейного типа требуется больше экономичности.

Недостатки РПД схожи с недостатками двухтактных поршневых агрегатов. Интересно, что вылечить это можно одними и теми же способами. Увеличенное потребление топлива сбивается непосредственным впрыском, нехватка эластичности - установкой изменяемых фаз. Это повышает экономичность и управляемость. Также для повышения эластичности меняется конфигурация трубопроводов. Такие изменения и были выполнены на моторе Mazda RX-8.

Как работает

Работает двигатель Ванкеляпо принципу, который достаточно просто объяснить даже несведущему в механике человеку. Агрегат обладает минимумом деталей, что позволяет быстро понять, какие системы задействуются в определенные промежутки времени.

Поршень двигателя в РПД заменяется ротором с 3 гранями, который передает силу давления сгораемых газов на вал эксцентрика.

Статор обладает эпитрохоидальной конфигурацией внутренних поверхностей. Он отличается высокой износостойкостью, поскольку имеет специальное покрытие. В вершинах ротора находятсяуплотнения, а на поверхности статораимеются выемки - они являются своеобразными камерами, в которых происходит сгорание. Вал вращается на специальных подшипниках. Они помещены на корпус. Также валоснащенэксцентриком - на нем и вращается ротор.

Шестерня вмонтирована в корпус. Она сцеплена с шестерней ротора. Взаимное действие этих шестерен создает движение ротора. Это позволяет образовать 3 камеры, которые постоянно изменяют свой объем.

Отношение передач шестерен равно 2:3, что обеспечивает один оборот вала за поворот ротора на 120 градусов. Когда ротор совершает полный оборот,все камерывыполняют четырехтактный цикл. Сгораемые газы действуют на эксцентрик вала через ротор - так возникает крутящий момент.

Между ротором и статором имеется 3 камеры. Впуск происходит, когда одна из вершин ротора начинает пересекать впускное отверстие для впрыска топлива. Объем камеры увеличивается, что заставляет смесь ее заполнить. Следующая вершина закрывает окно. Как и поршень двигателя традиционного исполнения, ротор сдавливает рабочую смесь перед воспламенением.

Она сжимается, при наибольшем сжатии в камере возникает искра. В результате осуществляется рабочий ход. После выпускное окно под давлением отработавших газов открывается, и они покидают камеру.

При одном обороте ротора двигатель совершает 3 цикла - это делает ненужным применение уравновешивающих устройств.

В рабочем процессе есть слабые звенья. Первое - повышенная нагрузка на уплотнения, а второе - избыток динамического перекрытия фаз.Не является оптимальной и конфигурация камеры сгорания. Однако есть и положительный момент - если повышать обороты, скорость распространения факела пламени увеличивается быстрее, чем перетекает топливная смесь.

Это позволяет применять для РПД бензин с пониженным октановым числом. Принцип работы Ванкеля достаточно прост, что в свое время привлекло к изобретению внимание многих производителей авто.

Не каждый автолюбитель знает, что Ванкель является одним из 5 подтипов в классификации роторных моторов.

Компактность, оборотистость, высокая производительность - не этого ли добиваются практически все производители мотоциклов? Однозначно, это так. Однако роторный мотор в мотомире таки не прижился. Все ставки делаются на классические поршневые двигатели.

Однако в истории производства мотоциклов существовало несколько исключений. К примеру, в 1974 году Hercules выпускает массовую серию Wankel, которые оборудованы двигателем KC-27. Это были роторные агрегаты, которые оснащались воздушным охлаждением. Двигатель имел объем294 куб. см. Мощность агрегатов составляла 25л.с. Для смазки агрегата, масло нужно было самостоятельно заливать в топливный бак.

В начале1980 роторный мотор использовали для оснащения мотоциклов Norton. Несмотря на то, что опытные прототипы таких двигателей появились еще в 1970-х.Инженеры Norton успешно внедрили РПД в спорт. К концу 80-х им не было равных.

Сегодня компания производит 588-кубовую модельдвумя роторами NRV588. Также инженерами Norton ведется разработка 700сс версии, которая называется NRV700. Она представляет собой мощный спортбайк, оснащенный инжекторным 170-сильным двигателем Ванкеля.

Как видно, эпоха роторных моторов еще не наступила. Поршневые системы так и остались лидирующими в сфере авто- и мотостроения. Обладатели байков с роторными двигателями могут образовать лишь небольшой круг фанатов Ванкеля. Возобновившийся интерес к «Ванкелю» компании Norton говорит о скором подъеме разработок и достижений в этой сфере.

Одной из причин, по которым двигатель не производится для оснащения автомобилей и мотоциклов - необходимость точного оборудования при его производстве. Малейший брак становится причиной выхода мотора из строя. Это пока не позволяет роторному агрегату заменить поршневой двигатель даже в узкихотраслях производства.

В 1957 году немецкие инженеры Феликс Ванкель и Вальтер Фройде продемонстрировали первый работоспособный роторный двигатель. Уже через семь лет его усовершенствованная версия заняла место под капотом немецкого спорткара «NSU-Спайдер» - первого серийного автомобиля с таким мотором. На новинку купились многие автомобильные компании - «Мерседес-Бенц», «Ситроен», «Дженерал моторс». Даже ВАЗ многие годы мелкими партиями выпускал машины с двигателями Ванкеля. Но единственной компанией, которая решилась на крупносерийное производство роторных двигателей и не отказывалась от них долгое время, несмотря ни на какие кризисы, стала «Мазда». Ее первая модель с роторным мотором - «Космо Спортс (110S)» - появилась еще в 1967 году.

ЧУЖОЙ СРЕДИ СВОИХ

В поршневом моторе энергия сгорания топливовоздушной смеси сначала преобразуется в возвратно-поступательное движение поршневой группы, а уже затем во вращение коленчатого вала. В роторном же двигателе это происходит без промежуточной ступени, а значит, с меньшими потерями.

Есть две версии бензинового 1,3‑литрового атмосферника 13B-MSP с двумя роторами (секциями) - стандартной мощности (192 л.с.) и форсированная (231 л.с.). Конструктивно это бутерброд из пяти корпусов, которые образуют две герметичные камеры. В них под действием энергии сгорания газов вращаются роторы, закрепленные на эксцентриковом валу (подобие коленчатого). Движение это весьма хитрое. Каждый ротор не просто вращается, а обкатывается своей внутренней шестерней вокруг стационарной шестерни, закрепленной по центру одной из боковых стенок камеры. Эксцентриковый вал проходит сквозь весь бутерброд корпусов и стационарные шестерни. Ротор движется таким образом, что на каждый его оборот приходится три оборота эксцентрикового вала.

В роторном моторе осуществляются те же циклы, что и в четырехтактном поршневом агрегате: впуск, сжатие, рабочий такт и выпуск. При этом в нем нет сложного механизма газораспределения - привода ГРМ, распредвалов и клапанов. Все его функции выполняют впускные и выпускные окна в боковых стенках (корпусах) - и сам ротор, который, вращаясь, открывает и закрывает «окна».

Принцип работы роторного двигателя показан на схеме. Для простоты приведен пример мотора с одной секцией - вторая функционирует так же. Каждая боковая сторона ротора образует со стенками корпусов свою рабочую полость. В положении 1 объем полости минимален, и это соответствует началу такта впуска. По мере вращения ротор открывает впускные окна и в камеру всасывается топливовоздушная смесь (позиции 2–4). В положении 5 рабочая полость имеет максимальный объем. Далее ротор закрывает впускные окна и начинается такт сжатия (позиции 6–9). В положении 10, когда объем полости вновь минимален, происходит воспламенение смеси с помощью свечей и начинается рабочий такт. Энергия сгорания газов вращает ротор. Расширение газов идет до положения 13, а максимальный объем рабочей полости соответствует позиции 15. Далее, до положения 18, ротор открывает выпускные окна и выталкивает отработавшие газы. Затем цикл начинается снова.

Остальные рабочие полости работают так же. А поскольку полостей три, то за один оборот ротора происходит аж три рабочих такта! А учитывая, что эксцентриковый (коленчатый) вал вращается в три раза быстрее ротора, на выходе получаем по одному рабочему такту (полезная работа) на один оборот вала для односекционного мотора. У четырехтактного поршневого двигателя с одним цилиндром это соотношение в два раза ниже.

По соотношению числа рабочих тактов на оборот выходного вала двухсекционный 13B-MSP похож на привычный четырехцилиндровый поршневой мотор. Но при этом с рабочего объема 1,3 л он выдает примерно столько же мощности и крутящего момента, сколько поршневой с 2,6 л! Секрет в том, что движущихся масс у роторного мотора в несколько раз меньше - вращаются только роторы и эксцентриковый вал, да и то в одну сторону. У поршневого же часть полезной работы уходит на привод сложного механизма ГРМ и вертикальное движение поршней, которое постоянно меняет свое направление. Еще одна особенность роторного мотора - более высокая стойкость к детонации. Именно поэтому он перспективнее для работы на водороде. В роторном двигателе разрушительная энергия аномального сгорания рабочей смеси действует только в направлении вращения ротора - это следствие его конструкции. А у поршневого мотора она направлена в противоход движению поршня, что и вызывает плачевные последствия.

Двигатель Ванкеля: НЕ ВСЁ ТАК ПРОСТО

Хотя у роторного мотора и меньше элементов, чем у поршневого, в нем применены более хитрые конструктивные решения и технологии. Но между ними можно провести параллели.

Корпусы роторов (статоры) изготовлены по технологии вставки листового металла: в корпус из алюминиевого сплава вставлена подложка из специальной стали. Благодаря этому конструкция легкая и прочная. Стальная подложка имеет хромовое покрытие с микроскопическими канавками для лучшего удержания масла. По сути, такой статор напоминает привычный цилиндр с сухой гильзой и хоном на ней.

Боковые корпусы - из специального чугуна. В каждом есть впускные и выпускные окна. А на крайних (переднем и заднем) закреплены стационарные шестерни. У моторов предыдущих поколений эти окна были в статоре. То есть в новой конструкции увеличили их размер и количество. За счет этого улучшились характеристики впуска и выпуска рабочей смеси, а на выходе - КПД двигателя, его мощность и топливная экономичность. Боковые корпусы в паре с роторами по функционалу можно сравнить с механизмом ГРМ поршневого мотора.

Ротор - по сути, тот же самый поршень и одновременно шатун. Изготовлен из специального чугуна, пустотелый, максимально облегчен. На каждой его стороне есть кюветообразная камера сгорания и, конечно же, уплотнители. Во внутреннюю часть вставлен роторный подшипник - своего рода шатунный вкладыш коленчатого вала.

Если привычный поршень обходится всего тремя кольцами (два компрессионных и одно маслосъемное), то у ротора подобных элементов в несколько раз больше. Так, апексы (уплотнения вершин ротора) играют роль первых компрессионных колец. Они изготовлены из чугуна с электронно-лучевой обработкой - для повышения износостойкости при контакте со стенкой статора.

Апексы состоят из двух элементов - основного уплотнителя и уголка. К стенке статора их прижимает пружина и центробежная сила. Роль вторых компрессионных колец играют боковые и угловые уплотнения. Они обеспечивают газоплотность контакта ротора и боковых корпусов. Как и апексы, к стенкам корпусов они прижимаются своими пружинами. Боковые уплотнители металлокерамические (на них приходится основная нагрузка), а угловые сделаны из специального чугуна. А еще есть изолирующие уплотнения. Они препятствуют перетеканию части отработавших газов во впускные окна через зазор между ротором и боковым корпусом. На обеих сторонах ротора есть и подобие маслосъемных колец - масляные уплотнения. Они задерживают масло, подаваемое в его внутреннюю полость для охлаждения.

Система смазки тоже изощренная. Она имеет минимум один радиатор для охлаждения масла при работе мотора на больших нагрузках и несколько видов масляных форсунок. Одни встроены в эксцентриковый вал и охлаждают роторы (по сути, похожи на форсунки охлаждения поршней). Другие встроены в статоры - по паре на каждый. Форсунки расположены под углом и направлены на стенки боковых корпусов - для лучшей смазки корпусов и боковых уплотнений ротора. Масло попадает в рабочую полость и смешивается с топливовоздушной смесью, обеспечивая смазку остальных элементов, и сгорает вместе с ней. Поэтому важно использовать только минеральные масла или одобренную производителем специальную полусинтетику. Неподходящие виды смазки при сгорании дают большое количество углеродных отложений, а это приводит к детонации, пропускам зажигания и снижению компрессии.

Топливная система довольно проста - за исключением количества и расположения форсунок. Две - перед впускными окнами (по одной на ротор), еще столько же - во впускном коллекторе. В коллекторе форсированного мотора на две форсунки больше.

Камеры сгорания очень длинные, и, чтобы сгорание рабочей смеси было эффективным, пришлось применить по две свечи на каждый ротор. Они отличаются друг от друга длиной и электродами. Во избежание неправильной установки на провода и свечи нанесены цветные метки.

НА ДЕЛЕ

Ресурс мотора 13B-MSP составляет примерно 100 000 км. Как ни странно, он страдает теми же проблемами, что и поршневой.

Первым слабым звеном кажутся уплотнения ротора, которые испытывают сильный нагрев и высокие нагрузки. Это действительно так, но прежде естественного износа их прикончат детонация и выработка подшипников эксцентрикового вала и роторов. Причем страдают только торцевые уплотнения (апексы), а боковые изнашиваются крайне редко.

Детонация деформирует апексы и их посадочные места на роторе. В результате вдобавок к снижению компрессии уголки уплотнений могут вывалиться и повредить поверхность статора, который не подлежит обработке. Расточка бесполезна: во‑первых, сложно найти нужное оборудование, а во‑вторых, запчастей под увеличенный размер просто нет. Не подлежат ремонту и роторы при повреждении пазов под апексы. Как водится, корень беды - в качестве топлива. Честный 98‑й бензин найти не так уж просто.

Быстрее всего изнашиваются коренные вкладыши эксцентрикового вала. Видимо, из-за того, что он вращается в три раза быстрее роторов. В результате роторы получают смещение относительно стенок статора. А вершины роторов должны быть равноудалены от них. Рано или поздно уголки апексов выпадают и задирают поверхность статора. Эту беду никак не предугадать - в отличие от поршневого мотора, роторный практически не стучит даже при износе вкладышей.

У форсированных наддувных моторов бывают случаи, когда из-за очень бедной смеси апекс перегревается. Пружина под ним выгибает его - в результате компрессия значительно падает.

Вторая слабинка - неравномерный нагрев корпуса. Верхняя часть (здесь протекают такты впуска и сжатия) холоднее, чем нижняя (такты сгорания и выпуска). Однако корпус деформируется только у форсированных наддувных моторов мощностью более 500 л.с.

Как и следовало ожидать, мотор очень чувствителен к типу масла. Практика показала, что синтетические масла , пусть и специальные, образуют при сгорании очень много нагара. Он накапливается на апексах и снижает компрессию. Нужно использовать минеральное масло - оно сгорает почти бесследно. Сервисмены рекомендуют менять его через каждые 5000 км.

Масляные форсунки в статоре выходят из строя в основном из-за попадания грязи во внутренние клапаны. Атмосферный воздух проникает в них через воздушный фильтр, и несвоевременная замена фильтра ведет к проблемам. Клапаны форсунок промывке не поддаются.

Проблемы с холодным пуском мотора, особенно в зимнее время, обусловлены потерей компрессии вследствие износа апексов и появления отложений на электродах свечей из-за некачественного бензина.

Свечей хватает в среднем на 15 000–20 000 км.

Вопреки расхожему мнению, производитель рекомендует глушить мотор как обычно, а не на средних оборотах. «Знатоки» уверены, что при выключении зажигания в рабочем режиме сгорают все остатки топлива и это облегчает последующий холодный пуск. По мнению сервисменов, толку от подобных ухищрений ноль. А вот действительно полезным для мотора будет хотя бы небольшой прогрев перед началом движения. С теплым маслом (не ниже 50º) его износ будет меньше.

При качественной дефектовке роторного двигателя и последующем ремонте он отходит еще 100 000 км. Чаще всего требуется замена статоров и всех уплотнений роторов - за это придется выложить не менее 175 000 рублей.

Несмотря на вышеперечисленные проблемы, в России хватает поклонников роторных машин - что уж говорить о других странах! Хотя сама «Мазда» сняла роторную «восьмерку» с производства и с ее наследницей пока не спешит.

Mazda RX-8: ТЕСТ НА ВЫНОСЛИВОСТЬ

В 1991 году «Мазда‑787В» с роторным мотором победила в гонке «24 часа Ле-Мана». Это была первая и единственная победа автомобиля с таким двигателем. Кстати, сейчас далеко не все поршневые моторы доживают до финиша в «длинных» гонках на выносливость.

Основные типы двигателей внутреннего сгорания и паровые машины имеют один общий недостаток. Он состоит в том, что возвратно-поступательное перемещение требует преобразования во вращательное движение. Это, в свою очередь, обуславливает низкую производительность, а также достаточно высокую изнашиваемость деталей механизма, включенных в различные типы двигателей.

Довольно много людей задумывались о том, чтобы создать такой мотор, в котором подвижные элементы только вращались. Однако решить эту задачу удалось только одному человеку. Феликс Ванкель - механик-самоучка - стал изобретателем роторно-поршневого двигателя. За свою жизнь этот человек не получил ни какой-либо специальности, ни высшего образования. Рассмотрим далее подробнее роторно-поршневой двигатель Ванкеля.

Краткая биография изобретателя

Феликс Г. Ванкель родился в 1902 году, 13 августа, в небольшом городке Лар (Германия). В Первую Мировую отец будущего изобретателя погиб. Из-за этого Ванкелю пришлось бросить учебу в гимназии и устроиться помощником продавца в лавке по продаже книг при издательстве. Благодаря этому он пристрастился к чтению. Феликс изучал технические характеристики двигателей, автомобилестроение, механику самостоятельно. Знания он черпал из книг, которые продавались в лавке. Считается, что реализованная позднее схема двигателя Ванкеля (точнее, идея ее создания) посетила во сне. Неизвестно, правда это или нет, но точно можно сказать, что изобретатель обладал незаурядными способностями, тягой к механике и своеобразным взглядом на многие вещи.

Первые типы двигателей

Изобретатель, поняв, как можно осуществить все 4 цикла обычного мотора при вращении, приступил к конструированию. В 1924 году Ванкель создал небольшую мастерскую. Она также выполняла роль лаборатории. Именно здесь Феликс Ванкель стал изучать роторно-поршневые системы. В 1936 году модель, собранная изобретателем, заинтересовала компанию "БМВ". Ванкель получил деньги, ему была предоставлена собственная лаборатория в Линдау.

Там он должен был разрабатывать опытные образцы авиамоторов. Однако до самого конца Второй мировой ни один роторный двигатель Ванкеля не был отправлен в серийное производство. Вероятно, это было вызвано тем, что доведение конструкции до пригодного к эксплуатации состояния и наладка массового производства требовали достаточно много времени

Послевоенные годы

После разгрома фашизма лаборатория была закрыта, а все оборудование, которое там находилось, было переправлено во Францию. В итоге Ванкель остался без работы. Этому поспособствовало его бывшее членство в национальной социалистической партии. Но спустя небольшой период времени Феликса пригласили в компанию NSU в качестве инженера-конструктора. Это предприятие на тот момент считалось старейшим производителем автомобилей и мотоциклов.

Опытный образец

В 1957 году, благодаря поддержке Вальтера Фреде (ведущего инженера в компании NSU), роторно-поршневой двигатель был впервые поставлен на автомобиль. Мотор был установлен на NSU Prinz. Однако первоначальная конструкция была очень далека от совершенства. Она была настолько сложной, что даже для замены свечей нужно было разобрать почти весь мотор. Кроме этого, конструкция была очень ненадежна, неэкономична и имела очень низкий КПД. Двигатель Ванкеля в связи с этим не пошел в серию. Автомобили отправились на конвейер с традиционным ДВС. Тем не менее роторно-поршневой двигатель доказал не только право на свое существование, но и продемонстрировал впечатляющий для того времени потенциал. Перспективы его использования были настолько привлекательны, что инженеров-конструкторов ничего не смогло остановить. Сам изобретатель понимал, что его детище требует усовершенствования, он стремился к тому, чтобы и функционирование, и ремонт двигателя вызывали как можно меньше затруднений. С этого момента началась активная деятельность по доведению мотора до эксплуатационного совершенства.

Двигатель Ванкеля: конструкция

Что собой представляет мотор? В центре ротора имеется круглое отверстие. Оно изнутри покрыто зубцами, как на шестеренке. В отверстие вставляется вал с меньшим диаметром. На нем также есть зубцы. Они препятствуют проскальзыванию вала. Отношения диаметров подбираются таким образом, чтобы перемещение вершин треугольников осуществлялось по одной замкнутой кривой. Она именуется "эпитрохоида". Задача Ванкеля состояла в том, чтобы для начала понять, что работа такого механизма возможна. Затем ему нужно было все точно и верно рассчитать. В результате поршень, выполненный в форме треугольника Рело, отсекает три камеры переменного положения и объема.

Особенности

Конструктивная характеристика двигателя значительно выигрывает в сравнении с обычными моторами. В частности, герметизация камер обеспечивается за счет торцевых и радиальных уплотнительных пластин. Они прижимаются к "цилиндру" с помощью ленточных пружин, давления газа и центробежных сил. Особого внимания заслуживает и характеристика двигателя с точки зрения производительности. За весь цикл вал совершает 3 полных оборота. В обычном поршневом моторе такого результата можно добиться при использовании шести цилиндров.

Внедрение в промышленность

После проведения первой успешной демонстрации в 1957 году двигатель Ванкеля заинтересовал крупнейших автогигантов того времени. Так, первой компанией, выкупившей лицензию, стала Curtiss-Wright. Спустя год изобретение стали использовать такие известные предприятия, как Mazda, Friedrich Krupp, MAN и Daimler-Benz. За достаточно непродолжительный период лицензии приобрело порядка ста компаний, в том числе с мировым именем: Ford, BMW, Porsche, Rolls-Royce.

Преимущества

Какие достоинства имеет двигатель Ванкеля? Принцип работы мотора заключается в том, что реализация любого четырехтактного цикла осуществляется без использования механизма газораспределения. Благодаря этому значительно упрощается конструкция мотора. В обычном 4-тактном поршневом моторе примерно на тысячу элементов больше. Огромный интерес крупнейших автомобильных предприятий был вызван потенциалом конструкции. Несомненными преимуществами является простота производства, несложный ремонт двигателя, компактность и небольшой вес. Все это способствует улучшению управляемости машины, облегчает расположение трансмиссии.

Компактность мотора позволяет создать удобный и довольно просторный салон. Усовершенствованные модели двигателя способны развивать высокую мощность при достаточно экономном расходе топлива. К примеру, современный мотор при объеме 1300 см 3 обладает 220 л. с. Если оснастить двигатель Ванкеля турбокомпрессором, то можно получить мощность до 350 л. с. Еще одним достоинством конструкции является очень низкий уровень вибраций и шумов. Двигатель Ванкеля отличается механической уравновешенностью. Снижение уровня шумов и вибрации достигается небольшим количеством деталей (их на 40% меньше, чем в традиционных моторах). Стоит также отметить и динамические характеристики мотора. На низкой передаче без особенной нагрузки можно разогнать машину до 100 км/ч при высоких оборотах. В конструкции мотора отсутствует механизм, преобразовывающий возвратно-поступательное перемещение во вращательное. За счет этого двигатель Ванкеля может выдерживать большие обороты в сравнении с традиционными ДВС.

Завершение эйфории

В 1964-м вышел автомобиль NSU Spyder, а после него была выпущена легендарная модель Ro 80. И в настоящее время в мире достаточно много существует клубов любителей этих машин. Затем с конвейера сошли такие модели, как Corvette XP, Mercedes C-111, Citroen M35. Однако единственной компанией, которая занялась массовым производством, стала Mazda. С 1967 года она выпускала по 2-3 новых автомобиля с РПД. Двигатель Ванкеля ставили на легкие самолеты, снегоходы, катеры. В 1973 году наступил конец эйфории. В то время нефтяной кризис был в разгаре. Именно в этот период проявился основной недостаток РПД - неэкономичность. Кроме компании Mazda, все производители свернули программы по выпуску автомобилей с роторными двигателями. Однако только Mazda продолжала выпуск таких машин. У компании значительно сократились продажи в Америке.

Недостатки РПД: недолговечность и ненадежность

Наряду с достоинствами, роторные двигатели обладали и существенными минусами. В первую очередь, они были очень недолговечными. Так, одна из первых моделей РПД в ходе испытаний выработала весь ресурс за 2 часа. Более успешный прототип смог выдержать 100 часов. Однако это не обеспечивало нормальной эксплуатации машины. Главная проблема состояла в неравномерности износа внутренней поверхности камеры. В ходе работы на ней образовывались поперечные борозды. Они получили весьма красноречивое название: "метки дьявола". После получения лицензии компания Mazda сформировала специальный отдел, который занимался усовершенствованием мотора. Вскоре выяснилось, что в процессе вращения ротора заглушки, расположенные на его вершинах, начинают вибрировать. Из-за этого и появляются эти борозды. Сегодня проблема долговечности и надежности решена. Для этого в производстве используется высококачественное покрытие, в том числе и керамическое.

Высокая токсичность выхлопов

Это еще один недостаток РПД. В сравнении с традиционными моторами, двигатель Ванкеля выделяет меньшее количество окислов азота, но во много раз больше углеводородов, что обусловлено неполным сгоранием топлива. Инженеры Mazda достаточно быстро нашли эффективное решение проблемы. Специалисты создали "термальный реактор". В нем происходит "дожигание" углеводородов. Mazda R 100 стала первым автомобилем, в котором был применен этот элемент. В 1968 была выпущена еще одна модель с "термальным реактором" - Familia Presto Rotary. Это авто, одно из немногих, сразу прошло достаточно жесткую экологическую проверку, выдвинутую США в 1970-м для импортируемых ТС.

Экономичность

Это еще одна проблема РПД. Частично она вытекает из описанной выше. Расход топлива в стандартном РПД значительно выше, чем у ДВС. Эта проблема снова была решена специалистами Mazda. Внедрив комплекс мер, в числе которых переработка карбюратора и термореактора, добавление в выхлопную систему теплообменника, создание нового зажигания и разработка каталитического конвектора, инженеры добились снижения расхода на 40%. Это позволило выпустить в 1978 году модель RX-7.

Отечественное производство

Кроме компании Mazda, автомобили с РПД выпускал и "АвтоВАЗ". В 1974-м на заводе было сформировано специальное конструкторское бюро. В Тольятти началось строительство цехов для серийного выпуска РПД. В связи с тем, что первоначально предполагалось, что ВАЗ будет просто копировать западную технологию, было решено наладить воспроизводство двигателя Mazda. При этом совершенно не учитывались многолетние наработки отечественных институтов моторостроения.

Достаточно долго велись переговоры между Ванкелем и советскими чиновниками. Некоторые встречи проходили непосредственно в Москве. Денег, однако, было недостаточно, поэтому использовать некоторые технологии так и не удалось. В 1976-м был выпущен первый односекционный мотор ВАЗ-311. Его мощность составила 65 л. с. В течение последующих пяти лет проводилась доводка конструкции. После этого завод выпустил 50 опытных автомобилей с двигателем Ванкеля. Они мгновенно разошлись среди сотрудников предприятия. Однако вскоре выяснилось, что мотор в машинах только внешне был похож на японский. Конструкция его была крайне ненадежна. В течение полугода все двигатели были заменены, а штат конструкторского бюро был сокращен.

Однако отечественное производство мотора было спасено спецслужбами. Их не слишком беспокоил ресурс конструкции и расход топлива. Больше их привлекали динамические характеристики двигателя. В короткое время из двух моторов ВАЗ-311 был собран один двухсекционный. Его мощность увеличилась почти вдвое - до 120 л. с. Двигатель стали ставить на специальную единицу - ВАЗ-21019. Эта модель получила неофициальное наименование "Аркан".

Перепрофилирование

Спецзаказы вдохнули вторую жизнь в конструкторское бюро. На ВАЗе стали выпускать двигатели для авто- и водного спорта. Машины стали часто завоевывать первые места. Спортивные чиновники, в свою очередь, были вынуждены запретить использование РПД. В 1987 на смену Поспелову (руководителю конструкторского бюро) пришел Шнякин. Он недолюбливал наземный транспорт, тяготея больше к авиации. С начала его руководства СКБ перепрофилировало свою деятельность на выпуск двигателей для воздушных машин. Это была неверная стратегия, поскольку самолетов в стране выпускается намного меньше, чем автомобилей. Завод же получал прибыль преимущественно с продажи автомоторов.

Следующей ошибкой стала переориентация на маломощные двигатели. Японцы устанавливают РПД на спортивные машины. А ВАЗ выпускал мололитражные модели "Ока", несмотря на то что динамичные моторы целесообразнее было бы ставить на более быстроходные авто. Так или иначе, на отечественных дорогах оказалось несколько микролитражек "Ока" с РПД. К 1998 году, наконец, завершилась подготовка гражданского варианта двухцилиндрового 1.3-литрового роторного мотора. Его устанавливали на модели ВАЗ 2107-2109 и 2105.

В заключение

Почему же ведущие производители мира все еще не перешли окончательно на выпуск машин с РПД? Дело в том, что для изготовления таких моторов необходима, в первую очередь, очень точная технология, включающая в себя множество разнообразных нюансов. Не каждая, даже крупная компания, может пойти по пути Mazda. Кроме того, дело в оборудовании. Для выпуска двигателя Ванкеля необходимы высокоточные станки для вытачивания поверхностей с эпитрохоидой. Для оборудования, которое используется сегодня на заводах, такая работа вполне выполнима. Сегодня серьезными исследованиями РПД занимается только Mazda. Инженеры компании постоянно совершенствуют конструкцию, решают множество различных проблем. Выпускаемые в Японии роторные двигатели соответствуют принятым в мире стандартам по надежности, расходу топлива и экологичности.

Единственная на данный момент выпускаемая в промышленном масштабе модель мотора роторного типа — это двигатель Ванкеля. Его относят роторным разновидностям движков, имеющим планетарное круговое движение основного рабочего элемента. Благодаря такой конструктивной компоновке, решение может похвастаться предельно простым техническим устройством, но не характеризуется оптимальностью в способах организации рабочего процесса и потому обладает своими неотъемлемыми и серьезными недостатками.

Двигатель Ванкеля роторный представлен во множестве вариаций, но, по сути, они различны между собой разве что численностью роторных граней и соответствующей формой внутренних поверхностей корпуса.

В общих чертах рассмотрим конструктивные особенности данного решения и углубимся немного в историю его создания и область использования.

История решений такого типа стартует в 1943 году. Именно тогда изобретателем Майларом была предложена первая аналогичная схема. После спустя некоторое время было подано еще ряд патентов на движки такой схемы. Также и разработчиком немецкой фирмы NSU. Но основным минусом, от которого страдал роторно поршневой двигатель Ванкеля, была система из уплотнений, расположенная между ребер на стыках соседствующих граней элемента треугольного типа и поверхностями неподвижных корпусных частей. Для решения столь трудной задачи подключился Феликс Ванкель, специализирующийся на уплотнениях. После, за счет своей устремленности и инженерному складу ума он возглавил разрабатывающую группу. И уже к 57-у году в недрах немецкой лаборатории был собран первый вариант, оснащенный основным вращающимся элементом треугольного типа и рабочей капсульной камерой, где вращательный элемент был намертво закреплен, в то время как вращение осуществлялось корпусом.

Куда более практичная вариация характеризовалась неподвижной рабочей камерой, в которой осуществлялось вращение треугольника. Такой вариант дебютировал годом позднее. К ноябрю 59-го года прошлого столетия фирмой были объявлены работы по созданию функционального решения роторного типа. За кратчайшие сроки множеством компаний по всему миру была приобретена лицензия на эту разработку, и из сотни фирм, около трети были из Японии.

Решение оказалось довольно компактным, мощным, с малым числом деталей. Европейские салоны пополнились машинами с роторными вариациями движков, но, увы, они обладали малым вращающим ресурсом, стремительным потреблением топлива и токсичным выхлопом.

Из-за нефтяного кризиса семидесятых попытки улучшить разработку до нужного уровня были свернуты. Лишь японской Маздой все также продолжались работы в этой области. Также трудился и ВАЗ, поскольку топливо в стране был очень дешевым, а мощные, хотя и с низким ресурсом, моторы были нужны силовым министерствам.

Но спустя тридцать лет ВАЗ закрыл производство и только Мазда до сих пор серийно запускает транспорт с моторами роторного типа. На данный момент выпускается лишь одна модель с таким решением – это Мазда RX-8.

После небольшого экскурса в историю стоит подробно остановиться на достоинствах и недостатках.

Высокая мощность, почти вдвое превышающая показатели поршневых вариаций с четырьмя тактами. Массы неравномерно движущихся элементов в нем сравнительно ниже, чем в случае поршневых вариаций, и амплитуда движения значительно ниже. Это возможно из-за того, что в поршневых решениях происходят возвратно-поступательные движения, в то время как в рассматриваемом типе применяются планетарной схемы.

На большую мощность влияет и то, что она выдается в течение троих четвертей при каждом обороте вала. Для сравнения, одноцилиндровый поршневой мотор даёт мощность лишь на протяжении четверти каждого из оборотов. Потому за единицу объема камеры сжигания берется куда больше мощности.

При объёмах камеры в тысячу триста сантиметров, у RX-8 в плане мощности, достигается показатель двести пятьдесят лошадиных сил. У предшественника, а именно у RX-7, с аналогичным объемом, но с турбиной было триста пятьдесят лошадиных сил. Потому особыми чертами автомобиля становится отличная динамика: при низких передачах можно без лишних нагрузок на мотор разогнать транспортное средство до сотни на больших оборотах движка.

Рассматриваемый тип движка куда проще уравновешивается механически и избавляется от вибрации, что способствует повышению комфортности лёгкого транспортного средства;

По части размеров рассматриваемый тип движка в полтора-два раза меньше по сравнению с равными по мощности поршневыми моторами. Число деталей меньше примерно на сорок процентов.

Недостатки двигателя

Небольшая длительность рабочего хода роторных граней. Хоть данный показатель нельзя в чистую сравнивать с другими вариантами из-за разных типов хода поршней и вращающегося элемента, у рассматриваемой разновидности данный показатель примерно на 20% меньше. Тут имеется один существенный нюанс — у поршневых решений происходит линейное увеличение объемов, которое аналогично направлению расстояния от ВМТ до НМТ. Но вот в случае рассматриваемого типа агрегатов данное действие происходит сложнее и лишь отрезок траектории передвижения оказывается непосредственно линией хода.

Потому решение характеризуется меньшей топливной эффективностью, нежели у поршневых вариаций. Потому малая длительность способствует очень высокой температуре выходящих газов – рабочим газам не удается во время передать большую часть давления треугольнику, поскольку выполняется открытие окна выхлопа и горячие массы с еще не прекратившимся горением объемных фрагментов выходят по выхлопной трубе. Потому их температура крайне высокая.

Сложность формы камеры горения. У данной камеры серповидная форма и солидная область, где газов контактируют со стенами и ротором. Потому крупная тепловая доля приходится на нагрев элементов движка, а это уменьшает коэффициент полезного действия тепла, но при этом возрастает нагрев движка. Также такие формы камеры приводят к ухудшенному смесеобразованию и замедленному горению рабочих смесей. Потому на движке RX-8 ставят две зажигательные свечи на одну роторную секцию. Такие свойства негативно влияют и на термодинамический коэффициент полезного действия.

Малый вращательный момент. Дабы снималось вращение с работающего ротора, вращательный центр которого непрерывным образом выполняет вращение планетарного типа, в данном моторе применяют на основном валу диски с цилиндровым расположением. Проще говоря — это все является элементами преобразователя. То есть, решение рассматриваемого типа так и не смогло в полной мере избавиться от основного минуса поршневых вариаций, а именно КШМ.

Хоть он и являет собой облегченный вариант, но основные минусы этого механизма: пульсация вращающего момента, малые размеры плеча основного элемента также присутствуют и в рассматриваемом типе.

Именно потому вариация с одной секцией не эффективен, и их нужно увеличивать до двух или трех секций, с целью получения приемлемых характеристик работы, еще рекомендуется устанавливать на вале и маховое колесо.

Кроме присутствия в движке рассматриваемого типа механизма преобразователя, на недостаточный для такого мотора вращающий момент может повлиять и тот нюанс, что кинематические схемы в таких решениях устроены слишком мало рационально в плане восприятия поверхностью вращающегося элемента давления рабочих расширительных масс. Потому только определенная часть давления, а это порядка одной трети – пере компилируется в рабочее вращение элемента, тем самым создавая вращающий момент.

Наличие вибраций внутри корпуса. Проблема в том, что рассматриваемый в статье тип систем подразумевает неравномерное по массе движение. То есть во время вращения массовый центр агрегата выполняет непрерывное передвижение вращательного типа вокруг массового центра, а радиус этого движения соответствует цилиндровому плечу основного моторного вала. Потому на движковый корпус внутри влияет вращающийся постоянным образом силовой вектор, соответствующий силе центробежного типа, появляющейся на находящемся во вращении элементе. То есть он в процессе вращения на также находящемся в движении цилиндрическому валу характеризуется неизбежными и выраженными элементами движения колебательного типа.

Что и является причиной неизбежных вибраций.

Низкая устойчивость к износу в торце уплотнений радиального типа по углам вращающегося треугольника. Поскольку к ним поступает существенная нагрузка радиального типа, свойственная из-за того, что таков двигатель Ванкеля принцип работы.

Высокая вероятность прорыва газовых масс с высоким давлением из зоны одного такта работы в другой такт. Причина кроется в том, что роторный ребровой контакт уплотнителя и стенок камеры сжигания выполняется по единой линии небольшой толщины. Также имеется вероятность прорыва по гнездам, в которые устанавливают свечи, в момент прохода ребра основного вращающегося элемента.

Сложность смазочной системы вращающегося элемента. Как пример, в уже ранее упомянутой модели японского производителя особыми форсунками впрыскивается масло в камеры сжигания, дабы трущиеся в процессе вращения о стенки камеры ребер смазывались. За счет этого усиливается выхлопная токсичность и параллельно с этим повышает необходимость движка в качественном масле.

Также, во время высоких оборотов повышаются запросы к смазке поверхности цилиндрического типа цилиндрического элемента основного вала, вокруг которого осуществляется вращение, и которое занято снятием главного усилия с вращающегося элемента, также переводя во вращательное движение вала. Из-за этих двух технических трудностей, разрешить которые довольно проблематично, проявлялась недостаточная смазка в случае высоких оборотов наиболее загруженных трением элементов движка, а значит, резким образом уменьшался движущий ресурс движка. Из-за этого недостаточного решения выходит очень малый ресурс движков рассматриваемого типа, которые были выпущены отечественным АвтоВАЗом.

Большая требовательность к точности выполнения элементов со сложной формой делают таков движок трудным в производстве. Для его производства требуется высокоточное и дорогое оборудование - станки, способные выполнить рабочую камеру с криволинейной поверхностью.

Если говорить о вращающемся элементе, то у него так же имеется форма треугольника, у которого выпуклые поверхности.

Сделав выводы из всего вышеописанного можно отметить, что рассматриваемый тип обладает не только выраженными преимуществами, но и большим количеством фактически непреодолимых минусов, не позволяющих ему победить поршневые вариации. Однако такая перспектива всерьез обсуждалось сорок или пятьдесят лет назад, и аналитические обзоры пестрили мнениями, что уже к началу девяностых годов прошлого столетия роторные решения разнообразных типов будут доминировать на автомобильном рынке.

Однако, даже с учётом негативных сторон и технических проблем, такое решение смогло неплохо себя зарекомендовать в техническом плане и даже вырвать свою долю на рынке, поскольку минусы конкурентного решения – поршневого мотора с КШМ еще серьёзнее сказываются на работе. И это с учётом того, что поршневой движок долгое время пытались улучшить.

Одним из самых проблематичных моментов при выполнении любого роторного движка — это воссоздание эффективной уплотняющей системы, необходимой для создания замкнутого объёма в рабочих камерах рассматриваемого типа решений. Пока что в схемах это считается одним из главных препятствий. Тут предстоит выполнить сложную в изготовлении уплотнительную систему.

Дабы набить руку и набраться положительного опыта в данном занятии, можно попробовать выполнить компактный рабочий вариант решения рассматриваемого типа непосредственно с «нуля».

Ориентировочный показатель мощности одной из роторных секцией будет находиться в районе сорока лошадиных. А значит, движок рассматриваемого типа, скажем, с двумя секциями, достигнет показателя в восемьдесят лошадиных сил. И так далее по схожему принципу.

В целом, изготовление такого типа решений всегда идет с оптимальным ритмом, при том что можно и вовсе отказаться от сторонних элементов. Как правило, корпусная часть таких решений выполняется из конструкционной стали легированного типа, подвергнутой упрочнению термохимического типа и стойкой к высоким температурам.

Как вариант, оптимальной твердостью поверхностного слоя можно подобрать показатель в районе семидесяти HRC. По части глубины, термически упроченный слой находится в районе полтора миллиметров. Аналогичным образом обрабатываются и до того же показателя твердости и устойчивости к износам уплотнения радиального и торцевого типа.

Такое решение обладает воздушным охлаждением, а смазочное масло будет поступать к камере сжатия посредством двух специальных форсунок. То есть, в данном случае не потребуется смешивать масло и бензин, как это бывает в двухтактных вариациях.

Движок рассматриваемого типа ставят на токарный станок, где он в течение нескольких часов подвергается обкатке без воздействиями температуры. Таким образом, можно оценить эффективность уплотнений и герметичность выполняемых секций как достаточно приемлемую.

Впоследствии можно измерить уровень давления, который наблюдается в зоне сжатия.

Последние материалы раздела:

Смотреть что такое
Смотреть что такое "душевный мир" в других словарях

Энциклопедический словарь 1. МИР, а; мн. миры, ов; м. 1. Совокупность всех форм материи в земном и космическом пространстве; Вселенная....

Наталья СтепановаМолитвенный щит
Наталья СтепановаМолитвенный щит

Все дело в том, дорогие мои, что Господь Бог наделил меня искренней любовью к людям. Этому меня учила и моя бабушка. Если говорить совсем кратко,...

Сонник: к чему снится Лошадь
Сонник: к чему снится Лошадь

Во сне дано не каждому, ведь это сильное, свободолюбивое животное может запросто скинуть своего наездника. Сон, в котором сновидец скачет на...