Подробное объяснение принципа работы двигателя с переменным сжатием Infiniti. Система изменения степени сжатия топливной смеси современного двс Двигатель с изменяемой степенью сжатия infiniti

Уникальная технология изменения степени сжатия представляет настоящий прорыв в моторостроении – 2-литровый VC-Turbo постоянно меняет характеристики, настраивая степень сжатия на оптимальную мощностную отдачу и максимальную топливную эффективность. По тяговым характеристикам этот 2-литровый бензиновый турбомотор вполне сравним с передовыми турбодизельными двигателями того же рабочего объема.

Двигатель VC-Turbo постоянно и совершенно незаметно для водителя изменяет степень сжатия с помощью системы рычагов, которые поднимают или опускают верхнюю мертвую точку (ВМТ) поршней, тем самым позволяя добиться наилучших характеристик мощности и экономичности.

Высокая степень сжатия в принципе делает работу двигателя более эффективной, однако в определенных режимах появляется риск взрывного сгорания (детонации). С другой стороны, низкая степень сжатия позволяет избежать детонации и развивать высокую мощность и крутящий момент. Во время движения степень сжатия двигателя VC-Turbo меняется от 8:1 (для максимальной динамики) до 14:1 (при минимальном расходе топлива), подчеркивая ориентированную на водителя философию INFINITI.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

Уникальное сочетание динамики и экономичности превращает VC-Turbo в реальную альтернативу современным турбодизелям, не на словах, а на деле опровергая мнение, что только гибридные и дизельные силовые агрегаты могут обеспечить высокие показатели крутящего момента и экономичность. VC-Turbo развивает 268 л.с. (200 кВт) при 5600 об/мин и 380 Нм при 4400 об/мин, что является лучшим сочетанием мощности и тяги среди четырехцилиндровых двигателей. Удельная мощность VC-Turbo выше, чем у многих турбомоторов конкурентов и вплотную приближается к показателям некоторых бензиновых V6. Однопоточный турбонагнетатель гарантирует моментальный отклик двигателя на увеличение подачи топлива.

Новый INFINITI QX50 с двигателем VC-Turbo – это самый эффективный автомобиль в своем классе с непревзойденной экономичностью. Версия с передними ведущими колесами расходует всего 8,7 л/100 км в комбинированном цикле измерений, что на 35% лучше показателей QX50 предыдущего поколения с двигателем V6. Полноприводная версия премиального кроссовера с усредненным расходом 9,0 л/100 км на 30% эффективнее предшественника.

Среди других очевидных преимуществ конструкции нового мотора – компактные размеры и сниженная масса. Блок и головка цилиндров отлиты из легкого алюминиевого сплава, а компоненты системы регулировки степени сжатия изготовлены из высокоуглеродистой стали. В результате по сравнению с 3,5-литровым двигателем INFINITI серии VQ новый VC-Turbo весит легче на 18 кг, а кроме того занимает меньше пространства в моторном отсеке.

За изменение степени сжатия в двигателе VC-Turbo отвечают система рычагов, электромотор и уникальный волновой понижающий редуктор. Электромотор через редуктор соединен с управляющим рычагом. Редуктор вращается, поворачивая управляющий вал в блоке цилиндров, а тот в свою очередь изменяет положение коромысел, через которые поршни приводят коленвал. Наклон коромысел меняет положение верхней мертвой точки поршней, а вместе с ним и степень сжатия. Эксцентриковый управляющий вал регулирует степень сжатия одновременно во всех цилиндрах. В результате варьируется не только степень сжатия, но и рабочий объем двигателя в диапазоне от 1997 см3 (8:1) до 1970 см3 (14:1).

Двигатель VC-Turbo также незаметно для пользователя переключается между стандартным рабочим циклом Отто и циклом Аткинсона, еще сильнее увеличивая мощность и эффективность. Цикл Аткинсона традиционно используется для повышения эффективности гибридных силовых установок. При работе ДВС по циклу Аткинсона впускные клапаны перекрываются, позволяя рабочей смеси в цилиндрах сильнее расширяться, сгорая с большей эффективностью. Двигатель INFINITI работает по циклу Аткинсона при высоких показателях степени сжатия, когда из-за более длинного хода поршней впускные клапаны на короткое время остаются открытыми уже в фазе сжатия.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

Когда степень сжатия VC-Turbo уменьшается, двигатель возвращается к обычному режиму работы (цикл Отто), с четко разделенными фазами выпуска, сжатия, сгорания и выпуска – таким образом, достигается более высокая мощность силового агрегата.

Помимо изменяемой степени сжатия в двигателе VC-Turbo применяется и ряд других передовых технологий INFINITI. Оптимальный баланс между эффективностью и мощностью обеспечивает как система распределенного впрыска (MPI), так и непосредственного (GDI):

  • GDI повышает эффективность сгорания топлива, предотвращая детонацию в двигателе при высоких степенях сжатия
  • MPI, в свою очередь, заранее подготавливает топливную смесь, обеспечивая ее полное сгорание в цилиндрах при низких нагрузках

При определенных оборотах двигатель самостоятельно переключается с одной системы впрыска на другую, а при максимальных нагрузках они могут работать и одновременно.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

INFINITI’s VC-Turbo engine is the world’s first production-ready variable compression ratio engine – and it makes its production debut on the new QX50. This unique variable compression technology represents a breakthrough in combustion engine design – the QX50’s 2.0-liter VC-Turbo continually transforms, adjusting its compression ratio to optimize power and fuel efficiency. It combines the power of a 2.0-liter turbocharged gasoline engine with the torque and efficiency of an advanced four-cylinder diesel engine.

Однопоточный турбонагнетатель повышает мощность и эффективность двигателя, обеспечивая быстрые отклики на педаль газа на любых оборотах и при любой степени сжатия. Благодаря турбонаддуву по отдаче мотор сравним с шестицилиндровым атмосферным двигателем. Однопоточный нагнетатель отличается компактностью, а также сниженными потерями тепловой энергии и давления выхлопных газов.

Интегрированный в алюминиевую головку блока выпускной коллектор также повышает эффективность работы двигателя и определяет его компактные размеры. Подобное решение позволило инженерам INFINITI разместить каталитический нейтрализатор сразу за турбиной, сократив таким образом путь выхлопных газов. Благодаря этому нейтрализатор быстрее прогревается после запуска двигателя и раньше выходит на рабочий режим.

Variable compression ratio technology represents a breakthrough in powertrain development. The QX50, powered by the VC-Turbo, is the first production vehicle ever to give drivers an engine that transforms on demand, setting a new benchmark for powertrain capability and refinement. This uncommonly smooth engine offers customers power and performance, as well as efficiency and economy.

Давление наддува регулируется электронно-управляемым клапаном (wastegate), который с высокой точностью контролирует поток выхлопных газов, проходящих через турбину. Это гарантирует высокую мощность и экономичность, а также помогает сократить уровень вредных выбросов.

Благодаря системе изменения степени сжатия отлично сбалансированный двигатель VC-Turbo обходится без уравновешивающих валов, обычно необходимых четырехцилиндровым моторам. VC-Turbo работает более плавно, нежели обычные рядные аналоги, а уровень шума и вибраций сравним с показателями традиционных V6. Это стало возможным, в том числе и благодаря компоновке с дополнительными коромыслами, в которой шатуны при рабочем ходе поршней почти вертикальны (в отличие от традиционного кривошипно-шатунного механизма, где они движутся из стороны в сторону). В итоге происходит идеальное возвратно-поступательное движение, не требующее уравновешивающих валов. Именно поэтому, несмотря на применение системы изменения степени сжатия, мотор VC-Turbo такой же компактный, как традиционный 2-литровый четырехцилиндровый двигатель.

Особенно нужно отметить и крайне низкий уровень вибраций нового двигателя. На заводских испытаниях, в ходе которых специалисты INFINITI сравнивали характеристики VC-Turbo с четырехцилиндровыми моторами конкурентов, революционный двигатель продемонстрировал значительно меньший уровень шума – почти как у 6-цилиндровых агрегатов.

В этом есть заслуга и применяемого INFINITI «зеркального» покрытия стенок цилиндров – оно на 44% уменьшает трение, позволяя двигателю работать ровнее. Покрытие наносится методом плазменного напыления, затем закаливается и хонингуется для создания ультра-гладкой поверхности.

Новый INFINITI QX50 c 2-литровым мотором VC-Turbo – первый в мире автомобиль, оснащенный системой активного подавления вибраций Active Torque Rod (ATR). Новый QX50 – единственный автомобиль в классе, оснащенный подобной технологией. Интегрированная в верхнюю опору двигателя, через которую на кузов обычно передается большая часть шума и вибраций, ATR оснащена датчиком ускорений, фиксирующим колебания. Система генерирует возвратно-поступательные вибрации в противофазе, позволяя четырехцилиндровому агрегату оставаться таким же тихим и плавным, как и моторы V6, и на 9 Дб уменьшает шум двигателя по сравнению с предыдущим QX50. В итоге VC-Turbo – один из самых тихих и уравновешенных двигателей в сегменте премиальных внедорожников.

Первые в мире активные опоры INFINITI установил на дизельный двигатель еще в 1998 году, подтверждая инновационность бренда в области силовых агрегатов. Систему ATR инженеры INFINITI разрабатывали с 2009-го по 2017 год, особое внимание уделив уменьшению размеров и массы – на первых прототипах главной проблемой считались габариты вибромотора. Однако, разработка более компактных возвратно-поступательных актуаторов позволила установить ATR в корпус меньшего размера, в полной мере сохранив способность системы максимально эффективно гасить вибрации.

На тему:

  • Британцы определили дату конца эры ДВС
  • Специалисты компании H2 рассказали об эффективности…

Подробная информация о первом в мире бензиновом серийном двигателе с изменяемой степенью сжатия. Ему предсказывают большое будущее и говорят, что разработанная Инфинити технология станет большой угрозой для существования дизельных моторов.

Бензиновый поршневой двигатель, который может динамически изменять степень сжатия*, то есть величину, на которую поршень сжимает топливовоздушную смесь в цилиндре, давняя мечта многих поколений инженеров, разрабатывавших двигатели внутреннего сгорания. Некоторые автомобильные марки были как никогда близки к разгадке теории, были сделаны даже образцы таких моторов, например, успехов в этом достиг Saab.

Возможно у шведского автопроизводителя сложилась бы совершенно иная судьба, если бы в январе 2000 года Saab не был окончательно приобретен корпорацией General Motors. К сожалению, для заокеанского хозяина были не интересны подобные разработки и дело было приостановлено.

*Степень сжатия- объём камеры сгорания в момент, когда поршень находится в нижней мертвой точке, к объему, когда он подминается к верхней мертвой точке. Иными словами, это показатель сжатия поршнем воздушно-топливной смеси в цилиндре


Основной соперник был сломлен и Nissan, как второй потенциальный разработчик инновационной системы с изменяемым коэффициентом сжатия, продолжил путь в гордом одиночестве. 20 лет кропотливого труда, расчетов и моделирования не прошли даром, люксовое подразделение японской компании известное под брендом Infiniti представило окончательную разработку двигателя с изменяемой степенью сжатия который мы увидим под капотом модели . Станет ли ее разработка лебединой песней всех дизельных двигателей? Вопрос интересный.

2.0 литровый четырехцилиндровый турбированный силовой агрегат (расчетная мощность 270 л.с. и 390 Нм крутящего момента) получил наименование VC-T (Variable Compression-Turbocharged). Уже в названии отражены принцип его работы и технические данные. Система VC-T способна плавно и непрерывно динамически изменять степень сжатия от показателя 8:1 до 14:1.

Общий принцип действия системы двигателя VC-T можно описать следующим образом:

Это схематичное простое описание принципа работы системы. На самом деле конечно же все гораздо сложнее.


Действительно силовые агрегаты с низкой степенью сжатия не могут обладать высокой производительностью. Все мощные двигатели, в особенности у гоночных машин, как правило, имеют очень высокую степенью сжатия, у многих болидов она превышает 12:1, и даже доходит до 15:1 у двигателей работающих на метаноле. Тем не менее такая высокая степень сжатия также способна сделать моторы более эффективными и экономичным. Это наводит на логичный вопрос, почему бы не делать двигатели, которые бы всегда обладали высокой степенью сжатия воздушно-топливной смеси? Зачем городить огород со сложными системами привода поршней?

Главная причина невозможности использования такой системы при работе на обычном низкооктановом топливе- появление при высокой степени сжатия и высокой нагрузке детонации. Бензин начинает не сгорать, а взрываться. Что понижает выживаемость узлов и агрегатов мотора и снижает его экономичность. По сути у бензинового двигателя происходит тоже самое, что и у мотора, работающего на ДТ, за счет высокого сжатия воспламеняется топливовоздушная смесь, правда происходит это не в нужный момент и это не предусмотрено конструкцией мотора.

В моменты «кризиса» сгорания топливо-воздушной смеси и приходит на помощь изменяемая степень сжатия, которая способна снижаться в моменты пиковой мощности с максимальным нагнетанием давления наддувом турбокомпрессора, что предотвратит мотор от детонации. И наоборот, во время работы на малых оборотах с малым давлением наддува, степень сжатия будет повышаться, увеличивая тем самым крутящий момент и снижая расход топлива.

В дополнение к этому, двигатели оснащаются системой регулируемых фаз газораспределения, что делает возможной работу двигателя по циклу Аткинсона в то время, когда от мотора не требуется отдачи высоких мощностных показателей.

Такие моторы обычно встречаются у гибридных автомобилей, главным для которых является экологичность и малый расход топлива.

Результатом всех проведенных изменений стал двигатель, который способен на 27 процентов увеличить топливную экономичность в сравнении с 3,5-литровым V6 Nissan обладающего примерно так же мощностью и крутящим моментом. По информации Reuters, на пресс-конференции инженеры компании Nissan заявил, что новый двигатель обладает крутящим моментом сопоставимым с показателями современного турбодизеля, и при этом он должен быть дешевле в производстве, чем любой современный турбодизельный мотор.

Вот почему Ниссан делает такую большую ставку на разработанную систему, ведь в его представлении она имеет потенциал, способный частично заменить дизельные двигатели по многим параметрам использования, возможно, включая более дешевые варианты для стран, где бензин является основным видом топлива, примером такой страны может быть и Россия.

Если идея приживется, в будущем наверняка появятся двухцилиндровые бензиновые силовые агрегаты, которые неплохо подойдут . Это может стать одной из веток развития системы.


Гибкость двигателя кажется впечатляющей. Технически такого эффекта удалось добиться при помощи, особого рычага привода воздействующего на вал привода, изменяющего положение многорычажной системы, вращающейся вокруг главного подшипника шатуна. Справа к многорычажной системе крепится еще один рычаг идущий от электродвигателя. Он изменяет положение системы относительно коленчатого вала. Это отражено в патенте и чертежах Infiniti. Шток поршня имеет центральную поворотную многорычажную систему, которая способна изменять свой угол, что приводит к изменению эффективной длины штока поршня, что в свою очередь изменяет длину хода поршня в цилиндре, которое, что в конечном итоге, изменяет степень сжатия.

Двигатель, разработанный для Infiniti даже с первого взгляда, выглядит гораздо более сложным, чем его классический соплеменник. Косвенно догадку подтверждают в самом Ниссан. Они говорят, что экономически оправданно по такой схеме делать четырехцилиндровые моторы, но не более сложные V6 или V8. Стоимость всех систем привода шатунов может оказаться слишком высокой.

С учетом всего вышесказанного эта схема двигателя должна, нет, просто обязана, прижиться на . Такая отдача мощности и экономичность будет непревзойденным бонусом для машин, оборудованных ДВС и электродвигателями.

Двигатель VC-T будет официально представлен 29 сентября на Парижском автосалоне.


P.S. Так вытеснит ли новый бензиновый двигатель дизельные моторы? Вряд ли. Во-первых, констукция бензинового мотора более сложная, а значит и более прихотливая. Ограничение по объему также ограничивает диапазон применения технологии. Производство дизельного топлива также никто не отменял, куда его девать, если все перейдут на бензин? Выливать? Складировать? И наконец, применение дизельных агрегатов (простой конструкции) отлично подходит для сложных природных условий, чего нельзя сказать о бензиновых ДВС.

Скорее всего уделом новой разработки станут гибридные автомобили и современные малолитражки. Что тоже по-своему немалая часть автомобильного рынка.

О технологии нового двигателя Infiniti мы уже писали в наших обзорных статьях. Уникальная модель бензинового мотора способная «на лету» изменять степень сжатия может быть мощной как обычный бензиновый силовой агрегат и экономичной, словно вы едите на дизельном моторе.

Сегодня Джейсон Фенске объяснит суть работы двигателя и то как он достигает наибольшей мощности и эффективности.

Технология переменного сжатия, или если хотите турбированный двигатель с переменным коэффициентом компрессии, может практически мгновенно изменять давление поршня на топливно-воздушную смесь в соотношении от 8:1 до 14:1 , одновременно предлагая высокоэффективное сжатие при малых нагрузках (в городе, к примеру, или на шоссе) и низкую компрессию, необходимую для турбины при резком ускорении, с максимальным открытием дроссельной заслонки.

Джейсон совместно с Infiniti объяснил принцип работы технологии, не забыв отметить нюансы и ранее неизвестные детали работы удивительного инновационного мотора. Эксклюзивный материал можно посмотреть в видеоролике, который мы опубликуем ниже, не забудьте включить перевод субтитров при необходимости. Но прежде мы выберем техническое «зерно» моторостроения будущего и отметим те нюансы, которые ранее были неизвестны.

Центральной технологией уникального мотора стала система специального поворотного механизма, которая благодаря сложному штоку поршня имеет центральную поворотную многорычажную систему, которая способна изменять свой угол работы, что приводит к изменению эффективной длины штока поршня, что в свою очередь изменяет длину хода поршня в цилиндре, которое в конечном итоге, изменяет степень сжатия.

Детально технология привода выглядит следующим образом:

1. Электромотор поворачивает рычаг исполнительного механизма 1.30 минута видео

2. Рычаг поворачивает приводной вал по схожему принципу, привода обычных распредвалов, при помощи системы кулачков.

3. Третье, нижний рычаг изменяет угол многозвенного привода, соединенного с верхним рычагом. Последний соединен с поршнем (1.48 минута видео)

4. Вся система при определенных настройках и позволяет поршню изменять высоту верхней мертвой точки, снижая или повышая степень сжатия.

К примеру, если двигатель переходит из режима «максимальной мощности» в режим «экономии топлива и повышения эффективности», волновой редуктор будет вращаться в левую сторону. Показано на правой фотографии (2.10 минута видео). Вращение передастся на приводной вал, который потянет нижний рычаг немного вниз, что приподнимет многозвенный привод, который в свою очередь сместит поршень ближе к головке блока, уменьшив объем и увеличив тем самым компрессию.

Дополнительно происходит переход от традиционного цикла работы ДВС Отто, в цикл Аткинсона, отличающийся соотношением времени тактов цикла, что достигается изменением времени закрытия впускных клапанов.

Кстати, переход, по данным Фенске, от одного режима работы мотора, в другой занимает не более 1.2 секунды!

Более того, новая технология способна варьировать степень сжатия во всем диапазоне от 8:1 до 14:1, перманентно подстраиваясь под стиль вождения, нагрузки и другие факторы, влияющие на работу двигателя.

Но даже объяснение работы столь сложной технологии не является окончанием истории. Еще одной важной характеристикой нового мотора является уменьшение давление поршня на стенки цилиндра, что позволит избежать овализации последнего, поскольку в паре с системой привода поршня применена система уменьшения трения поршня о стенки цилиндра, которая действует путем уменьшения угла атаки шатуна при ходе поршня.

В видео было отмечено, что рядный четырехцилиндровый двигатель ввиду особенностей конструкции получился несколько разбалансированным, поэтому инженеры были вынуждены добавить уравновешивающий вал, что усложняет конструкцию двигателя, но оставляет ей шанс на долгую жизнь без убийственных вибраций, которые возникают из-за работы сложного шатуна.

Степень сжатия – важная характеристика двигателя внутреннего сгорания, определяемая отношением объема цилиндра при нахождении поршня в нижней мертвой точке к объему в верхней мертвой точке (объему камеры сгорания). Повышение степени сжатия создает благоприятные условия для воспламенения и сгорания топливно-воздушной смеси и, соответственно, эффективного использования энергии. Вместе с тем, работа двигателя на разных режимах и разных топливах предполагает разную величину степени сжатия. Эти свойства в полной мере используются системой изменения степени сжатия.

Система обеспечивает повышение мощности и крутящего момента двигателя, снижение расхода топлива и вредных выбросов. Основная заслуга системы изменения степени сжатия в способности работы двигателя на разных марках бензина и даже разных топливах без ухудшения характеристик и детонации.

Создание двигателя с переменной степенью сжатия достаточно сложная техническая задача, в решении которой существует несколько подходов, заключающихся в изменении объема камеры сгорания. В настоящее время имеются опытные образцы таких силовых установок.

Пионером в создании двигателя с переменной степенью сжатия является фирма SAAB , представившая в 2000 году пятицилиндровый двигатель внутреннего сгорания, оборудованный системой Variable Compression . В двигателе использована объединенная головка блока цилиндров с гильзами цилиндров. Объединенный блок с одной стороны закреплен на валу, с другой взаимодействует с кривошипно-шатунным механизмом. КШМ обеспечивает смещение объединенной головки от вертикальной оси на 4°, чем достигается изменение степени сжатия в пределе от 8:1 до 14:1.

Необходимое значение степени сжатия поддерживается системой управления двигателем в зависимости от нагрузки (при максимальной нагрузке – минимальная степень сжатия, при минимальной – максимальная степень сжатия). Несмотря на впечатляющие результаты двигателя по мощности и крутящему моменту, силовая установка не пошла в серию, а работы по ней в настоящее время свернуты.

Более современной разработкой (2010 год) является 4-х цилиндровый двигатель от MCE-5 Development объемом 1,5 л. Помимо системы изменения степени сжатия двигатель оснащен другими прогрессивными системами – непосредственного впрыска и изменения фаз газораспределения .

Конструкция двигателя предусматривает независимое изменение величины хода поршня в каждом цилиндре. Зубчатый сектор, выполняющий роль коромысла, с одной стороны взаимодействует с рабочим поршнем, с другой – с поршнем управления. Коромысло рычагом соединено с коленчатым валом двигателя.

Зубчатый сектор перемещается под действием поршня управления, выполняющего роль гидроцилиндра. Объем над поршнем заполнен маслом, объем которого регулируется клапаном. Перемещение сектора обеспечивает изменение положения верхней мертвой точки поршня, чем достигается изменение объема камеры сгорания. Соответственно изменяется степень сжатия в пределе от 7:1 до 20:1.

Двигатель MCE-5 имеет все шансы попасть в серию в ближайшей перспективе.

Еще дальше в своих исследованиях пошел Lotus Cars , представив двухтактный двигатель Omnivore (дословно – всеядное животное). Как заявлено, двигатель способен работать на любом виде жидкого топлива – бензин, дизельное топливо, этанол, спирт и др.

В верхней части камеры сгорания двигателя выполнена шайба, которая перемещается эксцентриковым механизмом и изменяет объем камеры сгорания. С такой конструкцией достигается рекордная степень сжатия 40:1. Тарельчатые клапаны в газораспределительном механизме двигателя Omnivore не используются.

Дальнейшее развитие системы сдерживает низкая топливная экономичность и экологичность двухтактных двигателей, а также их ограниченное применение на автомобилях.

«Изменяемая степень сжатия» - технология, которая обеспечит будущее бензиновому двигателю еще лет на 30-50, а по характеристикам позволит ему значительно опередить дизельные моторы. Когда же появятся эти агрегаты и чем они лучше уже существующих?

Впервые мотор с изменяемой степенью сжатия засветился на Женевском автосалоне в 2000 году (см. ). Тогда его представила компания Saab. Самый высокотехнологичный на то время двигатель Saab Variable Compression (SVC) с пятью цилиндрами имел рабочий объем 1,6 л, но развивал немыслимую для такого литража мощность 225 л. с. и крутящий момент 305 Нм. Превосходными оказались и другие характеристики - расход топлива при средних нагрузках снизился на целых 30%, на столько же уменьшился показатель выбросов СО2. Что касается СО, СН, NОx и т. д., то они, по утверждению создателей, соответствуют всем существующим и планируемым на ближайшее будущее нормам токсичности. К тому же изменяемая степень сжатия дала возможность этому мотору работать на различных марках бензина - от А-76 до А-98 - практически без ухудшения характеристик и без детонации. Несколько месяцев спустя подобный силовой агрегат представила и компания FEV Motorentechnik. Это был 1,8-литровый двигатель Audi A6, в котором показатель расхода топлива снизили на 27%.

Однако из-за сложности конструкции эти моторы в то время так и не пошли в серию, а с целью повышения коэффициента полезного действия (КПД) двигатель внутреннего сгорания усовершенствовали путем внедрения непосредственного впрыска топлива, изменяемой геометрии впускного тракта, интеллектуальных турбонаддувов и т. д. Параллельно велась активная работа над созданием гибридных силовых установок, электромобилей, развитием водородных топливных ячеек и новых способов хранения водорода. Тем не менее, потенциал, заложенный в моторы с изменяемой степенью сжатия, не давал покоя многим инженерам. В результате появилось множество механизмов реализации этой идеи «в металле».

Наиболее близким к ее осуществлению сегодня является французский проект двигателя MCE-5, который стартовал еще в 1997 году. Родившаяся тогда концепция имела массу недостатков, устранять которые пришлось почти десять лет. В этом году данный мотор презентовали «в металле», как и саабовский в 2000-м на Женевском автосалоне.

овинка с четырьмя цилиндрами имеет объем 1,5 л и выдает при этом максимальную мощность 160 кВт (218 л. с.) и крутящий момент 300 Нм. Помимо изменяемой степени сжатия, двигатель оснащен непосредственным впрыском, системой изменения фаз газораспределения и укладывается во все перспективные экологические нормы.

Как изменяют степень сжатия

В MCE-5 диапазон контроля степени сжатия находится в пределах 7-18 (7:1-18:1). Более того, контроль и изменение степени сжатия происходит индивидуально в каждом цилиндре.

Механизм этот довольно сложный. Главная деталь - двухсторонняя урезанная шестерня-сектор, серединой посаженная на укороченный шатун кривошипно-шатунного механизма (КШМ). В свою очередь, шестерня-сектор с одной стороны входит в зацепление с шатуном поршня, а с другой - с шатуном механизма изменения объема камеры сгорания. Принцип работы этой конструкции очень прост - шестерня-сектор на оси шатуна является своего рода коромыслом. И если это коромысло наклонять в одну или другую сторону, у поршня будет меняться положение верхней мертвой точки (ВМТ), а соответственно, и объем камеры сгорания. А так как величина хода поршня постоянная, изменяется степень сжатия (отношение объема цилиндров к объему камеры сгорания). За наклон коромысла отвечает гидромеханическая конструкция, которой управляет электроника. Она также состоит из поршня с шатуном, нижний конец которого входит в зацепление с коромыслом (шестерней-сектором) с другой стороны. Объем над и под этим поршнем соединен с системой смазки, а в самом поршне, названном масляным, есть специальный клапан, пропускающий масло из верхней части в нижнюю. Управляют им с помощью эксцентрикового вала, который при содействии червячной передачи приводит в движение электромотор системы Valvetronic (BMW). Для изменения степени сжатия от 7 до 18 требуется менее 100 миллисекунд.

Объем камеры сгорания корректируется по принципу изменения пропускной способности масляных клапанов. При их открытии масляный поршень уходит вверх и камера сгорания увеличивается.

Ресурс - надежность

Конструктивно новый мотор стал сложнее. По теории вероятности, его надежность должна снизиться, однако создатели отрицают это. Они утверждают, что доводили двигатель очень долго и все хорошо рассчитали и проверили. Ресурс этого агрегата увеличится, так как на поршень уже не будут действовать боковые и ударные нагрузки, происходящие у классического ДВС из-за шатуна, ось которого располагается под углом к оси поршня (кроме ВМТ и НМТ). В новом моторе усилие поршня и жестко «привязанного» к нему шатуна передается только в вертикальной плоскости, соответственно, давление на стенки цилиндров небольшое, поэтому трущиеся поверхности этих деталей изнашиваются значительно меньше. Такие особенности конструкции двигателя также обеспечили снижение шумности его работы. А кроме того, значительно тише стала работать поршневая группа и снизились потери энергии на трение - это еще плюс несколько процентов в пользу КПД мотора.

Другие способы изменения объема камеры сгорания:

Конструктивная особенность работы первого заявленного мотора с изменяемой степенью сжатия - головка 1 и верхняя часть блока 2 цилиндров были подвижными и с помощью специального кривошипа 3 перемещались вверх-вниз относительно коленвала 4 с неподвижной осью и нижней части блока цилиндров.

Зачем менять степень сжатия


В классическом бензиновом ДВС на разных режимах работы в цилиндры подается неодинаковое количество воздуха. Соответственно, в конце такта сжатия давление существенно отличается. Повышенное (при максимальных оборотах коленвала и больших нагрузках, когда дроссельная заслонка полностью открыта) может стать источником детонационного сгорания, результат - перегрев и повышенные нагрузки на детали цилиндро-поршневой группы. Чтобы избежать этого, камеры сгорания всех моторов делают объемными - с небольшим запасом, из расчета исключения повышенного давления в критичных режимах. Но двигатели в основном работают в режиме частичных нагрузок, когда давление в конце такта сжатия меньше, чем максимально возможное. Соответственно, не используется часть давления, «потерянная» из-за большей (на данных режимах) камеры сгорания. А чтобы этого не было, нужно изменять объем камеры сгорания, т. е. степень сжатия, в зависимости от режима работы двигателя. Это, собственно, и есть ответ на вопрос, почему моторы с изменяемой степенью сжатия имеют лучшие характеристики и столь перспективны.

Юрий Дацык
Фото МСЕ

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Последние материалы раздела:

Смотреть что такое
Смотреть что такое "душевный мир" в других словарях

Энциклопедический словарь 1. МИР, а; мн. миры, ов; м. 1. Совокупность всех форм материи в земном и космическом пространстве; Вселенная....

Наталья СтепановаМолитвенный щит
Наталья СтепановаМолитвенный щит

Все дело в том, дорогие мои, что Господь Бог наделил меня искренней любовью к людям. Этому меня учила и моя бабушка. Если говорить совсем кратко,...

Сонник: к чему снится Лошадь
Сонник: к чему снится Лошадь

Во сне дано не каждому, ведь это сильное, свободолюбивое животное может запросто скинуть своего наездника. Сон, в котором сновидец скачет на...